
table of contents 1

○ ○

tailoring
progeCAD

customizing and programming progeCAD
by R. H. Grabowski

C
 o

 p
 y

 r
 i

 g
 h

 t

 2
 0

 0
 9

 b

 y

 u
 p

 F
 r

 o
 n

 t
 .

 e
 Z

 i
 n

 e

 P
 u

 b
 l

 i
 s

 h
 i

 n
 g

 ,

 L
 t

 d
 .

 A

 l
 l

 r

 i
 g

 h
 t

 s

 r
 e

 s
 e

 r
 v

 e
 d

 w

 o
 r

 l
 d

 w
 i

 d
 e

.

u p F r o n t . e Z i n e P u b l i s h i n g

2 tailoring progeCAD

○ ○

Copyright Information
Copyright © 2009 by upFront.eZine Publishing, Ltd. All rights reserved worldwide. All Rights Reserved

All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any
omission or misuse (of any kind) of service marks or trademarks should not be regarded as intent to infringe on the property of
others. The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to
distinguish their products.

This book is sold as is, without warranty of any kind, either express or implied, respecting the contents of this book and any
disks or programs that may accompany it, including but not limited to implied warranties for the book’s quality, performance,
merchantability, or fitness for any particular purpose. Neither the publisher, authors, staff, or distributors shall be liable to the
purchaser or any other person or entity with respect to any liability, loss, or damage caused or alleged to have been caused
directly or indirectly by this book.

Technical writer Ralph Grabowski

Technical editors The progeCAD Team

Copy editor Herbert Grabowski

table of contents 3

○ ○

Contents
1 • Tailoring the Environment of progeCAD............... 13

Starting progeCAD 2009 .. 14

Changing the User Interface.. 14
Changes Through Windows ... 14

Windows 2000 and XP ... 14

Windows Vista and 7 ... 15

Changes Through progeCAD .. 15
Options: General .. 15

Options: Paths ... 17
Search Path Options .. 18

Default System File Names ... 20

Options: Display .. 21
Graphics Window .. 21

Background Colors .. 21

Menus ... 22

Crosshair Colors and Size .. 23
Axis Color .. 23

Snap Cursor Colors and Markers .. 24

Other User Interface Elements .. 26
Command Bar ... 26
Status Bar .. 27
Drawing Tabs .. 27
Toolbars ... 28

Startup Options ... 28
Statup Switch .. 29

/b Switch ... 29

2 • Creating Keystroke Shortcuts & Aliases30
Shortcut Keys .. 31
Defining Shortcut Keys ... 32

Editing Keyboard Shortcuts .. 33

Deleting Keyboard Shortcuts .. 34

Assigning Multiple Commands .. 34

Command Aliases .. 35
Creating New Aliases .. 36

Editing Aliases .. 37

Deleting Aliases .. 37

Rules for Writing Aliases ... 37
progeCAD Aliases: Sorted by Command Name ... 38

4 tailoring progeCAD

○ ○

Sharing Shortcuts .. 40
Exporting Shortcuts & Aliases .. 40
Importing Shortcuts and Aliases ... 41

Importing Through the Command Bar .. 41

File Formats .. 42
Keystroke Shortcuts - .ick ... 42

nAccelKeys .. 42

[AccelKey-n] .. 42

Command .. 42

Accel ... 43

Aliases - .ica ... 44
nAliases= .. 44

Alias= ... 45

LocalCommand= and GlobalCommand= ... 45

3 • Modifying Toolbars & Writing Macros 46
Customizing the Toolbar Look ... 47
Rearranging Toolbars .. 47

Dragging & Moving Toolbars ... 48

Toggling the Display of Toolbars ... 49

Creating New Toolbars .. 50
Renaming Toolbars ... 51

Changing Button Size, Color, and Tooltips .. 52

Writing Toolbar Macros ... 53
Simple Macros ... 54
Intermediate Macros .. 55

Toolbar Macros Are No Panacea .. 55

Sharing Toolbars ... 56
Saving Toolbars ... 56
Importing Toolbars ... 56

.mnu File Format ... 58
General Format .. 58
Toolbar Format .. 59

***TOOLBARS .. 59

**name ... 59

TBAR_name ... 59

_Toolbar .. 59

"titleBar" ... 59

defaultPosition .. 59

defaultVisibility ... 60

xCoord and yCoord ... 60

rows ... 60

Button Format ... 60
ID_cmdName ... 60

_Button ... 60

cmdName .. 60

smallIcon ... 60

largeIcon ... 60

macro ... 60

table of contents 5

○ ○

Flyout Button Format .. 61
_Flyout .. 61

_otherIcon ... 61

TBAR_name ... 61

Help String Format ... 61
***HELPSTRINGS ... 61

TBAR_name [name] .. 61

ID_cmdName ... 61

[helpString] ... 61

4 • Customizing Menus ... 62
Modifying the Menu Bar ... 63
Examing Menu Names .. 64

Underline - & .. 65

Dialog Box - 65

Tab Separator - \t ... 65

New... and Ctrl+N ... 65

Editing Macros ... 65
Cancel - ^C ... 66

Transparent - ' ... 66

Internationalize - _ ... 66

Enter - ; .. 66

Pause - \ ... 67

Editing the Help String .. 67
Changing Options .. 67

Experience Level ... 68

MDI Window ... 69

ActiveX In-Place Activation ... 69

Checked-State and Grayed-Stated Variables ... 70

Value - & ... 70

Not - ! ... 70

Context Menu Entity Availability .. 71

Miscellaneous ... 71

Adding New Menu Items ... 72
Deleting Menu Items .. 73

ICM Menu File Format .. 74
nMenuItems .. 74
Name ... 74

Alt-Shortcut - & .. 74

Dialog Box - 75

Right-Justified - \t ... 75

TearOffName ... 75
Command .. 75

Cancel - ^C ... 76

Internationalize - _ ... 76

Enter - ; .. 76

Pause - \ ... 76

Visibility .. 76
Experience Level ... 77

MDI Window ... 77

ActiveX In-Place Activation ... 77

Other .. 78

6 tailoring progeCAD

○ ○

HelpString .. 78
SubLevel .. 78
AddSpacerBefore ... 79
EntityVisibility .. 79
ChekVar ... 80
GrayVar .. 80

Value - & ... 80

Not - ! ... 81

5 • Customizing Linetypes ... 82
Commands That Affect Linetypes .. 83
System Variables that Affect Linetypes .. 83

The Special Case of Polylines .. 83

Compatibility with AutoCAD ... 84

Customizing Linetypes .. 84
progeCAD Explorer ... 84

Editing the Linetype Definition .. 86

Deleting Linetype Definitions .. 87

At the Command Prompt ... 89
Testing the New Linetype .. 90

Creating Linetypes with the Text Editor 91

The Linetype Format.. 92
Line1: Header .. 92

Line 2: Data ... 92

Complex (2D) Linetypes .. 92
Embedding Text ... 93

Text - "HW" ... 94

Text Style - STANDARD ... 94

Text Scale - S=.2 .. 94

Text Rotation - R=0.0 .. 94

Absolute - A=0.0 .. 94

X and Y Offset - X=-0.1 and Y=-0.1 .. 94

Embedding Shapes .. 95
Shape Name - SSS ... 95

Shape File - ltypeshp.shx ... 95

6 • Making Hatch Patterns .. 96
ere Do Hatch Patterns Come From? ... 97
How Hatch Patterns Work .. 97

Creating Custom Hatch Patterns .. 99
Hatch Command .. 99
BHatch Command .. 100

Understanding the .pat Format .. 101
Comment and Header Lines ... 101

Comment - ; .. 101

Start of Definition - * .. 101

table of contents 7

○ ○

Pattern Name ... 101

Description .. 101

The Hatch Data ... 102
angle .. 102

xOrigin and yOrigin ... 102

xOffset and yOffset ... 102

dash1,... .. 102

Tips on Creating Pattern Codes ... 103

Adding Custom Patterns to the Palette 105
Creating a Sample Hatch Pattern .. 105
Creating the Slide .. 106

7 • Creating Shapes & Fonts 108
Fonts, Complex Linetypes, and GDT Symbols............................. 109
Fonts .. 109
Complex Linetypes ... 109
GDT Symbols .. 109

About Shape Files .. 110
Font Compatibility with AutoCAD .. 110
Using Shapes in Drawings ... 111

The Shape File Format ... 112
Header Fields .. 112

Definition Start - * .. 112

shapeNumber ... 112

totalBytes .. 112

shapeName .. 113

Definition Lines .. 113
bytes .. 113

Vector Codes ... 113
Instruction Codes ... 114

End of Shape - 0/000 .. 115

Draw Mode - 1/001 ... 115

2/002: Move Mode - .. 115

Reduced Scale - 3/003 .. 115

Enlarged Scale - 4/004 .. 115

Save (Push) - 5/005 .. 115

Recall (Pop) - 6/006 .. 116

Subshape - 7/007 ... 116

X,y Distance - 8/008 ... 116

X,y Distances - 9/009 .. 116

Octant Arc - 10/00A .. 116

Fractional Arc - 11/ 00B ... 117

Bulge Arc - 12/00C ... 118

Polyarc - 13/00D .. 118

Flag Vertical Text Flag - 14/00E .. 118

8 tailoring progeCAD

○ ○

8 • Using Script Files ... 120
What are Scripts? .. 120
Drawbacks to Scripts .. 121
Strictly Command-Line Oriented .. 121

Script Commands and Modifiers .. 122
Script ... 122
RScript ... 122
Resume .. 122
Delay ... 122
Special Characters ... 123

Enter - (space) ... 123

Comment - ; .. 123

Transparent - ' ... 123

Pause - Backspace .. 123

Stop - esc .. 123

Recording Scripts .. 124

9 • Programming LISP .. 125
The History of LISP in CAD .. 126
Compatibility between LISP and AutoLISP ... 126

Additional LISP Functions ... 126

Different LISP Functions ... 127

Missing AutoLISP Functions .. 127

The LISP Programming Language.. 127
Simple LISP: Adding Two Numbers ... 127

LISP in Commands .. 129
Remembering the Result: setq ... 130

LISP Function Overview .. 131
Math Functions .. 131
Geometric Functions ... 132

Distance Between Two Points ... 132

The Angle from 0 Degrees .. 132

The Intersection of Two Lines ... 132

Entity Snaps ... 132

Conditional Functions ... 133
Other Conditionals .. 133

String and Conversion Functions .. 133
Joining Strings of Text ... 134

Converting Between Text and Numbers .. 134

Other Conversion Functions .. 134

External Command Functions .. 135
Command Function Limitation ... 136

Accessing System Variables .. 136

GetXXX Functions .. 136
Selection Set Functions ... 137
Entity Manipulation Functions .. 138
Advanced LISP Functions .. 138

table of contents 9

○ ○

Writing a Simple LISP Program ... 139
Why Write a Program? .. 139

The Id Command .. 139

The Plan of Attack .. 139
Obtaining the Coordinates .. 139

Placing the Text ... 141
Putting It Together ... 142

Adding to the Simple LISP Program... 143
Conquering Feature Bloat .. 143

Wishlist Item #1: Naming the Program .. 143

Defining the Function - defun ... 144

Naming the Function - C: ... 144

Local and Global Variables - / ... 144

Wishlist Item #2: Saving the Program ... 144

Wishlist Item #3: Automatically Loading the Program .. 145

Wishlist #4: Using Car and Cdr ... 145

Saving Data to Files ... 149
The Three Steps .. 149

Step 1: Open the File .. 149

Step 2: Write Data to the File ... 150

Step 3: Close the File .. 151

Putting It Together ... 151
Wishlist #5: Layers ... 152

Wishlist #6: Text Style .. 152

Tips in Using LISP .. 152
Tip #1. Use an ASCII Text Editor. ... 152

Tip #2: Loading LSP Code into progeCAD ... 153

Tip #3: Toggling System Variables .. 153

Tip #4: Be Neat and Tidy. .. 153

Tip #5: UPPER vs. lowercase .. 154

Tip # 6: Quotation Marks as Quotation Marks ... 154

Tip #7: Tabs and Quotation Marks .. 155

10 • Introduction to DCL ... 156
What Dialog Boxes Are Made Of .. 158

Your First DCL File ... 159
DCL Programming Structure .. 161

Start Dialog Box Definition ... 161

Dialog Box Title .. 161

OK Button .. 161

Testing the DCL Code .. 164
Displaying System Variable Data .. 165
Adding the Complimentary LISP Code ... 166
Clustering Text .. 167

Supplying the Variable Text .. 168

Leaving Room for Variable Text .. 169

Fixing the Button Width .. 169
Centering the Button ... 170

Testing the Dialog Box .. 170
Defining the Command .. 171

10 tailoring progeCAD

○ ○

Examples of DCL Coding .. 173
Buttons .. 173

Making Buttons Work .. 174

Check Boxes .. 176

Radio Buttons ... 178

Clusters .. 181
Columns and Rows .. 181

Boxed Row ... 182

Boxed Row with Label .. 182

Special Tiles for Radio Buttons .. 183

Debugging DCL .. 184
Dcl_Settings .. 184
DCL Error Messages ... 184

Dialog has neither an OK nor a CANCEL button ... 184

Error in dialog file "filename.dcl", line n ... 184

Dialog too large to fit on screen .. 184

Additional Resources ... 185

11 • DCL Reference .. 186
Tile Reference ... 189

Name .. 190

Label ... 190

Initial Focus ... 190

Key ... 191

Exiting Dialog Boxes .. 191

Button .. 192
Radio_Button .. 196
Toggle .. 198
Image_Button ... 199
Edit_Box ... 201
List_Box ... 203
Popup_List .. 206
Slider ... 208
Text ... 211
Spacer ... 214
Image .. 215
Column .. 217
Row & Boxed_Row ... 219

OurBase.Dcl ... 220

LISP Functions for Dialog Boxes .. 221
Dialog Boxes Displayed by LISP Functions ... 222
Load_Dialog .. 223
New_Dialog ... 223
Start_Dialog .. 223
Done_Dialog ... 224
Term_Dialog .. 224
Unload_Dialog ... 224
Get_Tile .. 225
Set_Tile .. 225

table of contents 11

○ ○

Get_Attr ... 225
Mode_Tile ... 225
Action_Tile .. 226
Client_Data_Tile .. 226
Start_List .. 227
Add_List ... 227
End_List ... 227
Start_Image ... 228
Slide_Image .. 228
Fill_Image... 229
Vector_Image .. 229
DimX_Tile & DimY_Tile ... 230
End_Image ... 230
Dialog Boxes Displayed by LISP Functions ... 231

Alert ... 231

Help .. 231

AcadColorDlg .. 231

Acad_TrueColorDlg .. 232

InitDia ... 233

12 • Employing Diesel Expressions 234
Is Diesel a Programming Language? ... 234
What Diesel Does ... 235
Brief List of Diesel Functions .. 235

Numeric Conversion Functions .. 236

ModeMacro: Displaying Text on the Status Bar 236
Reporting Values of System Variables ... 236

Debugging Diesel .. 237
MacroTrace ... 238

Using Variables ... 238

Diesel Functions .. 239
Math Functions .. 239

+ (Addition) ... 239

- (Subtraction) ... 239

* (Multiplication) ... 239

/ (Division) .. 239

Logic Functions .. 240
= (Equal) ... 240

< (Less than) ... 240

> (Greater Than) .. 240

!= (Not Equal) .. 240

<= (Less Than or Equal) .. 240

>= (Greater Than or Equal) ... 241

and (Logical Bitwise AND) .. 241

eq ... 241

if .. 241

or (Logical Bitwise Or) ... 241

xor (Logical Bitwise Xor) .. 241

12 tailoring progeCAD

○ ○

Conversion Functions.. 242
angtos ... 242

fix ... 242

rtos ... 243

String Functions... 243
index .. 243

nth ... 244

strlen .. 244

substr ... 245

upper .. 245

System Functions... 245
edtime .. 245

eval .. 246

getvar ... 247

Diesel Programming Tips ... 247

Diesel in Menus and Toolbars .. 247
Parsing the Name Macro ... 248

$(if, ... !.) .. 248

$(eq, ... 1), .. 249

$(getvar,attmode), ... 249

&Normal .. 249

Parsing Diesel in Macros .. 249
Bitcode Macros .. 250

Diesel in AutoLISP ... 250
Via the Setvar Function ... 250
Concatenate Two Diesel Strings ... 250
Via the MenuCmd Function .. 251

13 • Understanding DXF ... 252
References .. 252

Introduction .. 253
DXF Formats ... 253

DWG and DXF Content ... 254
Miscellaneous Comments .. 255

DXF Format ... 255
Header Section of DXF Files .. 256

Object Properties ... 260

Group Codes .. 260
HEADER Section .. 261

Version Numbers .. 262

CLASSES Section ... 262
TABLES Section ... 263
BLOCKS Section ... 264
ENTITIES Section ... 265
OBJECTS Section ... 267
THUMBNAILIMAGE Section .. 268
EOF ... 268

chapter 1 tailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCAD 13

○ ○

progeCAD allows you to change the way it looks and works. The first few of these chapters
concentrate on changing the look of progeCAD; later chapters on changing the way it works.

There isn’t a whole lot to change in its user interface. For example, you cannot change or con-
figure the devices it works with, such as the graphics board or pointing device. (progeCAD uses
whatever devices are specified with the Windows operating system.) You can, however, change
a fair bit of progeCAD’s user interface, as described by this chapter.

(Later chapters of this ebook include information about progeCAD that you won’t find else-
where. There are a number of aspects of progeCAD that do not seem to be documented any-
where, such as command-line switches, macro metacharacters, and export file formats.)

12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567

In This Chapter

• Starting progeCAD. • Setting support file paths.
• Command line options. • Specifying search path options.
• Changing screen and cursor colors and displays.

C • H • A • P • T • E • R 1

Tailoring the
Environment
of progeCAD

○ ○

14 tailoring progeCAD

Starting progeCAD 2009

You can start progeCAD in one of three ways:

• Double-click the progeCAD icon you found on your computer’s desktop.

• On the Windows 2000 or XP taskbars, click the Start button, and then select Programs |
progeCAD 2009 | progeCAD 2009.

(In Windows Vista and 7, click the Start icon, and then choose All Programs |
progeCAD 2009 | progeCAD 2009.)

• In the Windows Explorer, double-click the name of a .dwg file. (This option works only
when progeCAD is assigned to work with .dwg files.)

Changing the User Interface

progeCAD allows you to change many aspects of its user interface. You can change the size and
color of the crosshair cursor, determine the background color of the drawing area, and more.

Some of the changes are controlled by Windows, the others by progeCAD.

Changes Through Windows

Windows lets you set the colors and fonts for windows elements, such as dialog boxes and title
bars.

Windows 2000 and XP

To change these in Windows 2000 and XP, right-click the Windows desktop, and select Prop-
erties.

chapter 1 tailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCAD 15

○ ○

• The Appearance tab handles fonts and colors.

• The Settings | Advanced | General| Display controls the overall size of fonts and user
interface elements.

Windows Vista and 7

In Windows Vista and 7, access is somewhat more complicated:

1. Right-click the desktop, and select Personalize.

2. In the Personalization dialog box, choose Window Color and Appearance.

3. Choose Open Classic Appearance Properties for More Color Options.

4. Click Advanced, and then change the color, font, and size of window elements.

To change the font size globally, click Adjust Font Size in the Personalization dialog box.

Changes Through progeCAD

Within progeCAD, the Options dialog box controls most of the changes to the user interface, as
described in this chapter. Other changes can be made by changing toolbars and menus, as
described later in this book.

To access the Options dialog box, enter the Options command. (Alternatively, click the Tools
menu item, and then click Options.) The dialog box is illustrated on the next page.

Options: General

Experience Level determines the number of items listed by menus:

• Advanced shows all menu items; default.

• Intermediate shows many menu items.

• Beginner shows the fewest menu items.

○ ○

16 tailoring progeCAD

Left to right: The Dimension menu in Beginner, Intermediate, and Advanced display modes.

12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567

Options Dialog Box

The Options dialog box is the primary method of customizing the user interface of progeCAD.
You access it with the Options command. (From the Tools menu, choose Options.)

chapter 1 tailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCAD 17

○ ○

I prefer to keep menus in Advanced mode, but you may find that Beginner mode helps reduce
the clutter of commands.

You can customize which menu items are shown by the three experience levels, as described in
the chapter on Customizing Menus.

Options: Paths

After it is freshly installed on your computer, progeCAD uses a number of folders in which to
store support files, such as font files, the on-line help, and hatch patterns. progeCAD finds
support files by consulting paths to the folders. (Paths specify the name of the drive and the
folder, such as c:\progeCAD.)

For the most part, you should leave the paths alone. But you may want to change paths for
these reasons:

• Your firm has clients with different standards for fonts, layers, and so on. By storing the
related files in different folders, and then pointing progeCAD to the folders, you keep the
standards separate and intact from each other.

• You are a third-party developer, and need paths pointing to sets of different files.

• You import drawings from other CAD packages, and need to map different sets of fonts via
the .fmp font mapping file.

Here is how to change paths and files:

1. From the Tools menu, select Options.

2. In the Options dialog box, select the Paths/Files tab.

3. Next to a heading name, click on the path name. For example, next to Fonts click

○ ○

18 tailoring progeCAD

C:\Users\herb\AppData\Roaming\progeSOFT\progeCAD 2009\R9\PRENG\Fonts...
and then edit the path.

4. To add paths, click the Browse button, which lets you select a drive and folder, including
those on networks.

When the path name appears missing, such as for Drawings, the default folder is used. For
progeCAD, this is C:\Program Files \progeSOFT\progeCAD 2009.

TIPS Separate paths with semicolons (;), such as:
D:\CAD\progeCAD 6\Patterns ; D:\CAD\progeCAD 6\Patterns\ISO

When there are two or more paths, progeCAD searches them in the order in which they
appear.

In some cases, only the first path is used; for example, if you have two paths for Draw-
ings, the Open command looks only in the first one.

Search Path Options

Here are details on the paths specified through the Option dialog box’s Paths/Files tab.

Drawings specifies the path to the folders in which commands like Open search for .dwg
drawing files. Default is C:\Program Files\progeSOFT\progeCAD 2009. You may want to
change this path to the folder that holds your drawings. I use C:\Program
Files\progeSOFT\progeCAD 2009\samples, because I often open the sample drawing files.

Fonts specifies the path to folders in which commands such as Style search for .shx and .ps
font files. Defaults are:

• C:\Users\login\AppData\Roaming\progeSOFT\progeCAD 2009\R9\PRENG\Fonts

• C:\Program Files (x86)\progeSOFT\progeCAD 2009\Fonts

progeCAD accesses TrueType fonts automatically through the C:\Windows\Fonts folder, so
there is no need to add it.

Help specifies the path to the folder holding .chm compiled help files used by the Help com-
mand. The default is C:\Program Files\progeSOFT \progeCAD 2009\Help folder. There is
no need to change this path.

Xrefs specifies the paths to the folders in which commands like Xref search for externally-
referenced drawing files. Default is C:\Users\login\AppData\Roaming\progeSOFT\
progeCAD 2009\R9\PRENG\. As with drawings, you should change this to the folder holding
your .dwg drawing files.

Menus specifies the path to the folders in which commands like Menu search for .mnu menu,
.dcl dialog box, .lsp LISP, and .bmp bitmap files. Defaults are:

chapter 1 tailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCAD 19

○ ○

• C:\Program Files\progeSOFT\progeCAD 2009\

• C:\Users\login\AppData\Roaming\progeSOFT\progeCAD 2009\R9\PRENG\

• Location of some bitmap image files used by icons — C:\Program Files\progeSOFT\
progeCAD 2009\bmp

• Location of addons — C:\Program Files\progeSOFT\progeCAD 2009\\addon

There is usually no need to change these paths.

Hatch Patterns specifies the path to the folders in which commands like Hatch search for
.pat hatch pattern and .sld slide files. Defaults are:

• Standard hatch patterns — C:\Users\login\AppData\Roaming\progeSOFT\progeCAD
2009\R9\PRENG\Patterns

• ISO hatch patterns — C:\Users\login\AppData\Roaming\progeSOFT\progeCAD
2009\R9\PRENG\Patterns\ISO

• Additional hatch patterns — C:\Users\login\AppData\Roaming\progeSOFT\progeCAD
2009\R9\PRENG\Patterns\Extras

You may want to add paths to .pat files provided with other CAD packages, such as AutoCAD.

Blocks specifies the path to the folders in which commands like Insert search for .dwg block
files. Defaults are:

• C:\Program Files\progeSOFT\progeCAD 2009

• C:\Users\login\AppData\Roaming\progeSOFT\progeCAD 2009\R9\PRENG\

• C:\Program Files\progeSOFT\progeCAD 2009\bmp

• C:\Program Files\progeSOFT\progeCAD 2009\addon

You should change this to the folder holding your .dwg block files.

Print Styles specifies the path to the folders holding .ctb and .stb plot style files. The default
is C:\Users\login\AppData\Roaming\progeSOFT\progeCAD 2009\R9\PRENG\Plot styles.
You can add paths to plot style files provided with AutoCAD.

Print Output Path specifies the folder in which .prn print-to-file spooling files from the Plot
command are stored. The default is C:\Program Files\progeSOFT\progeCAD 2009\. You may
need to change this path to work with third-party spooling software.

TIP The PSetup command can be used to force plots to be saved as files. In the Print
Setup dialog box, click Spooling, and then turn on the Force print to file option.

Temporary File specifies the path to the folders in which progeCAD stores temporary files,
such as automatic backup files (filename.sv$). Default is C:\Users\login\AppData\Local\
Temp. There is usually no need to change this path.

○ ○

20 tailoring progeCAD

Templates specifies the path to the folders in which commands like New search for .dwt
template files. Default is C:\Users\login\AppData\Roaming\progeSOFT\progeCAD
2009\R9\ PRENG\Templates.

Spelling specifies the path to the folders in which the Spell command searches for .dic dictio-
nary files. Default is C:\Users\login\AppData\Roaming\progeSOFT\progeCAD
2009\R9\PRENG \Spelling. There is no need to change this path.

Color Books specifies the path to the folders in which commands like Color search for .acb
color book files. Default is C:\Users\login\AppData\Roaming\progeSOFT\progeCAD
2009\R9\PRENG \color books.

Default System File Names

The Option dialog box’s Paths/Files tab also allows you to specify the names of default files.
These are found in the lower half of the dialog box:

Log File specifies the name of the file used to record the command-line text. (Alternatively,
you can specify the name with the LogFileName command.) The default file name is icad.log.

TIP You turn on logging with the LogFileOn command, and turn it off with
LogFileOff. You can read the icad.log file in any text editor.

Template specifies the name of the drawing file used to start new drawings upon starting
progeCAD or when using the New command. Default is metrics.dwt in the
C:\Users\login\AppData\Roaming\progeSOFT\progeCAD 2009\R9\PRENG\Templates
folder.

Alternate Font specifies the font to use when a font cannot be found, and has no alternative
defined in the icad.fnt file. Default is the txt.shx font file in the C:\Program
Files\progeSOFT\progeCAD 2009 \Fonts folder. You can also define the alternate font file
with the FontAlt system variable.

Font Mapping specifies the file that maps fonts. Default is icad.fmp in the \progeCAD 6
folder. When a font cannot be found, progeCAD consults this file for the name of a matched
font; if the matched font cannot be found, it uses the alternative font specified above (typically
txt.shx). For example, progeCAD substitutes its ic-gdt.shx font for AutoCAD’s gdt.shx font.

Spelling Dictionary specifies the default file used by the Spell command to check the spell-
ing of words in drawings. The default is en_US.dic found in the C:\Users\login
\AppData\Roaming\progeSOFT\progeCAD 2009\R9\PRENG\Spelling folder.

chapter 1 tailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCAD 21

○ ○

Options: Display

The Display tab of the Options dialog box is the most interesting of tabs, as far as customizing
the look of progeCAD is concerned.

Graphics Window

Show Tabs toggles the display (shows and hides) the model and layout tabs. I like to have the
tabs turned on, because they provide the quickest way to switch between layouts. If you only
work in model tab, then you can turn off the tabs.

Show Scroll Bars toggles the display of the vertical and horizontal scroll bars. Again, I like
these turned on, because they provide the fastest way to pan the drawing. Alternatively, use the
ScrollBar command, and then enter T to toggle the scroll bars.

Command : scrollbarscrollbarscrollbarscrollbarscrollbar
WNDLSCRL is currently on: OFF/Toggle/<On>: ttttt

Background Colors

The first change I always make is to background color of the drawing area: if it is black, then I
change it to white.

• Black was the traditional color in the days when CAD ran on the DOS operating systems;
some users prefer it because colors look more vibrant against a black background.

• White is preferred by many today, because it most closely resembles the paper upon
which the drawing will be printed.

You can change the color of the drawing area in the Graphics Screen Color. To change the
colors of the progeCAD drawing area:

1. In the Display tab, click the Color button next to Graphics Screen Color.

2. Select a color from the Color dialog box, illustrated below. For a white background, choose
color 7.

○ ○

22 tailoring progeCAD

3. Click OK to dismiss the Color dialog box.

You can repeat the steps to change the background color of paper space, using the button next
to Paper Color.

Menus

Display Prompt Boxes toggles the display of context-sensitive menus that appear near the
cursor. These menus list the names of options relevant to the current command, as illustrated
below for the Arc command.

I am not used to using prompt boxes, and so I keep this option turned off.

TIP You can turn off all prompt boxes by clicking the red x in the upper right corner.
progeCAD asks,

and then click Yes.

Clicking No turns off the prompt box for this instance of the command only.

chapter 1 tailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCAD 23

○ ○

Crosshair Colors and Size

The Crosshairs tab of the Options dialog box controls the color and size of the 3D crosshair
cursor.

Axis Color

progeCAD displays a “tricolor” cursor that shows a different color for each axis. By default, the
colors are:

Axis Color

x red
y green
z blue

Layout tabs
Scroll bars

Tri-color
crosshair cursor

Scroll bars

Background
color

○ ○

24 tailoring progeCAD

But you can change them, if that is your desire. Follow these steps:

1. In the Options dialog box, select the Crosshairs tab. Notice the Axis Color section.

2. Click one the three Color buttons, and then select another color.

3. Repeat for each of the axes.

If you wish, you can also change the size of the cursor. A setting of 100 percent of the screen
makes the cursor full-size, as shown below.

When the background color is other than black, the cursor colors may look different, as shown
by the white background illustrated below.

Snap Cursor Colors and Markers

The cursor can display information about entity snaps — called the “flyover” or “snap” cursor.
The Snapping tab of the Options dialog box controls the visibility and color of flyovers.

 The relationship between the dialog box settings and the flyovers are illustrated below.

chapter 1 tailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCAD 25

○ ○

Tooltip

Snap marker box
Snap aperture box

Snap setting on cursor

Earlier snap marker

Show snap setting on cursor — displays the current entity snap setting near the
cursor at all times. Curiously enough, the icons displayed by this setting do not match the
icons used by the snap marker box.

Enable fly-over snapping — provides overall control in displaying the tooltips and
snap marker box. Although the Display snap aperture box option seems to be in-
cluded, it is unaffected by this toggle.

Display tooltips — toggles the display of tooltips, the small yellow text boxes
that name the entity snap. Shown above is the Quadrant tooltip.

Display snap aperture box — toggles the display of the aperture box, which
defines the area in which progeCAD looks for entities to snap to. In addition, you can
change the size of the aperture from its default of 10 pixels.

The tooltips and snap marker appear only when an entity is within the aperture box.

Display snap marker box — toggles the display of the snap marker box, which is an
icon (not a box!) that indicates the esnap mode. There is a different icon for each entity
snap; shown above is the QUAdrant esnap icon. The color, size (in pixels), and thickness
can be changed to differentiate it from the aperture box.

Draw snap marker box in all views — shows the snap marker in all viewports, when
the drawing is opened in multiple viewports.

○ ○

26 tailoring progeCAD

Other User Interface Elements

Other elements of the user interface are changed by
commands and by selecting options in the View menu’s Dis-
play option.

In addition to the scroll bars (described earlier), the menu
toggles the display of the command and status bars, and draw-
ing tabs.

Command Bar

The command bar is where you enter the names of commands
and respond to prompts from progeCAD. Traditional AutoCAD and progeCAD
users prefer to have the command bar visible.

TIP In progeCAD you don’t need to keep the command bar displayed, if you want to
save some screen real estate, such as with the small screens of netbook computers.
When the command bar is off, its function is reproduced on the status bar, as illustrated
below.

Using the Circle command in the command bar:

Using the Circle command in the status bar:

Notice that the coordinate area provides useful information during the command.

From the View menu, choose Display | Command Bar. But the CmdBar command is far
more useful:

Command : cmdbarcmdbarcmdbarcmdbarcmdbar
Floating/Lower/Upper/<Hide Command Bar>:

CmdBar Meaning

Floating Floats command bar in the drawing area.
Lower Attaches command bar to top of drawing area (default).
Upper Attaches command bar to top of drawing area.
Hide Hides command bar.
T Toggles display of the command bar (undocumented).

Alternatively, choose View | Display | Command Bar from the menu bar (see figure
above). Better yet, just click the command prompt area of the status bar to turn the com-
mand bar on and off.

chapter 1 tailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCAD 27

○ ○

Status Bar

I find the status bar one of the most useful elements of a CAD program’s user interface, and so
that is why I can’t fathom why anyone’d want to turn it off. Or why toggling the status bar gets
its own dedicated function key — F10.

From the View menu, choose Display | Status Bar. Or press F10. Or enter the StatBar
command:

Command : statbarstatbarstatbarstatbarstatbar
WNDLSTAT is currently on: OFF/Toggle/<On>: (Enter an option.)

StatBar Meaning

OFF Hides the status bar.
ON Displays the status bar.
Toggle Toggles display of the command bar.

Drawing Tabs

Drawing tabs let you switch quickly between drawings. I am surprised more CAD programs
don’t have them, since document bars (another name for the tabs) are common in many Win-
dows programs.

TIP To switch between drawings, press Alt+Tab.

So, it’s cool that progeCAD has the tabs. As with the status bar, I don’t know why anyone’d
want to turn them off, but you can.

Command
bar: Lower

Command
bar: Upper

Command
bar: Floating

Drawing tab

Status bar

Toolbars

○ ○

28 tailoring progeCAD

From the View menu, choose Display | Drawing Tabs. Or enter the DrawingTab com-
mand:

Command : drawingtabdrawingtabdrawingtabdrawingtabdrawingtab
Show/Toggle/<Hide Drawing Tab>: (Enter an option.)

Toolbars

The Toolbar item on the View menu displays the Select Toolbars dialog box. It lets you toggle
the display of every toolbar, as well as change the size and color of toolbars. (Alternatively,
enter the TbConfig command.) More details in the “Modifying Toolbars & Writing Macros”
chapter.

Startup Options

It was common knowledge in the days of the DOS operating system that many programs had
additional options for starting up. With Windows hiding much of what goes on behind a graphi-
cal user interface, command-line options are no longer in common use. Startup options are
still available in some programs, including progeCAD.

For instance, you start progeCAD start with an existing drawing, rather than with a new blank
drawing. This is done by editing its DOS command line. Here’s how:

1. On the Windows desktop, right-click the progeCAD icon.

2. From the shortcut menu, select Properties.

3. In the Properties dialog box, select the Shortcut tab. Notice that the default command-
line text is similar to:

Target: "C:\Program Files\progeSOFT\progeCAD 2009 Pro ENG\icad.exe"

The folder name varies, depending on where progeCAD is located on your computer, and
the version of progeCAD you installed. The quotation marks are necessary when the
command line text contains spaces. as this one does.

4. Edit the text in the Target box to start progeCAD with a drawing. Add the text shown in
boldface:

Target: "C:\Program Files\progeSOFT\progeCAD 2009 Pro ENG\icad.exe" "c:\hatch patterns.dwgc:\hatch patterns.dwgc:\hatch patterns.dwgc:\hatch patterns.dwgc:\hatch patterns.dwg"

chapter 1 tailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCADtailoring the environment of progeCAD 29

○ ○

 Notice that:

• The full path to the drawing is required.

• Separate pairs of quotation marks are needed for the program and the drawing file.

• Quotations marks are needed only when the path and file name contain spaces.

5. Click OK. to exit the dialog box.

6. Double-click the icon to test your modification. progeCAD should start up with the hatch
pattern drawing.

If you make a syntax error, Windows will complain via a dialog box.

Statup Switch

progeCAD also supports the use of switches in startup command lines. A switch tells progeCAD
what to do upon startup. Switches are prefixed by the slash characters (/), followed by one or
more characters.

/b Switch

The /b switch specifies the .scr script file to run immediately after progeCAD starts. See the
“Using Script Files” chapter to learn how to write script files.

Here is an example of using the /b switch to run a script file named “startup script.scr”:

Target: "C:\Program Files\progeSOFT\progeCAD 2009 Pro ENG\icad.exe" /b/b/b/b/b "c:\startup script.scrc:\startup script.scrc:\startup script.scrc:\startup script.scrc:\startup script.scr"

There may be additional command-line switches, but I am unaware of them.

○ ○

30 tailoring progeCAD

the best-known ways to execute commands in Windows are with elements of the graphical
user interface, such as menus and toolbars. Power users know, however, that the keyboard is
the fastest way to enter commands. Once you memorize shortcut keystrokes like Ctrl+C, (copy
to clipboard), Ctrl+Tab (switch to another drawing), and Ctrl+V (paste), you can work at top
speed.

progeCAD has two facilities for creating shortcut keystrokes of your own. Both are accessed
through the Customize dialog box:

• The Keyboard tab lets you assign shortcuts to function keys, as well as Ctrl and
arrow key combinations.

• The Aliases tab lets you define aliases, which are one- or more-letter command
mnemonics, such as L for the Line command, and AA for Area.

12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567

In This Chapter

• Creating new shortcut keys. • Making command aliases.
• Editing and deleting keyboard shortcuts. • Editing and deleting aliases.
• Assigning multiple commands. • Sharing shortcuts with other programs.
• Understanding the rules for making aliases.
• Reading the keystroke shortcuts .ick and aliases .ica file formats.

C • H • A • P • T • E • R 2

Creating Keystroke
Shortcuts & Aliases

chapter 2 creating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliases 31

○ ○

Shortcut Keys

Shortcut keys let you carry out commands by simply pressing preassigned keys on the key-
board. For example, pressing Ctrl+S to save drawings. For some users, this is faster than
selecting commands from menus, toolbars, or typing entire command words at the keyboard.

Out-of-the-box, progeCAD defines the shortcut keystrokes shown below.

Shortcut Meaning Command Executed

Function Keys
F1aá Display on-line help. HELP
F2a Display Prompt History window. PMTHIST
F3a Toggle object snap mode. ESNAP T
F4a Toggle tablet mode. TABLET T
F5a Switch to next isoplane. ISOPLANE
F6a Toggle coordinate display. COORDINATE T
F7a Toggle display of the grid. GRID T
F8a Toggle ortho mode. ORTHOGONAL T
F9a Toggle snap mode. SNAP T
F10 Toggle status bar. STATBAR T

Control Keys
Ctrl+Aaá Select all entities in drawing. SELGRIPS ALL
Ctrl+Caá Copy selected entities to Clipboard. COPYCLIP
Ctrl+Shift+C Copies entities with a basepoint. COPYBASE
Ctrl+D Copies large numbers of entities. COPYQUICK
Ctrl+Shift+D Copies with basepoint. COPYBASEQUICK
Ctrl+Ea Switch to next isoplane. ISOPLANE
Ctrl+Naá Start a new drawing. NEW
Ctrl+Oaá Open a drawing file. OPEN
Ctrl+Paá Print the drawing. PRINT
Ctrl+Saá Save the drawing. QSAVE
Ctrl+Ta Toggle tablet mode. TABLET T
Ctrl+Vaá Paste from Clipboard into drawing. PASTECLIP
Ctrl+Xaá Cut selected entities to Clipboard. CUTCLIP
Ctrl+Yaá Redo the last undo. REDO
Ctrl+Zaá Undo the last command. U

Ctrl+1a Toggles the Properties palette. PROPERTIES
Ctrl+2a Displays the Explorer dialog box. EXPLAYERS

Other Keys
Delaá Deletes selected entities . DELETE
Down Arrow Scrolls recent commands. ...
Up Arrow Scrolls recent commands. ...
Shift+Left Arrow Pans left. PAN L
Shift+Right Arrow Pans right. PAN R
Shift+Down Arrow Pans down. PAN D
Shift+Up Arrow Pans up. PAN U
Page Down Pans down by a pagefull. PAN PGD
Page Up Pans up by a pagefull. PAN PGU

a Shortcut key compatible with AutoCAD. á Shortcut key standard in Windows.

○ ○

32 tailoring progeCAD

 Shortcut keys can be assigned to:

• Function keys — those marked with the F prefix, such as F1 and F2.

• Shifted keys — hold down the SHIFT key, and then press a function, number, or
alphabet key, such as F2 or B.

• Alternate keys — hold down the Alt key, and then press another key.

• Control keys — hold down the CTRL key, and press another key.

• Shifted Control keys — hold down the SHIFT and CTRL keys, and press another key.

• Shifted Alternate keys — hold down both the SHIFT and ALT keys, and then press
another key.

• Control + Alternate keys — hold down both the CTRL and ALT keys, and press another
key.

• Shifted Control + Alternate keys — hold down the CTRL and ALT and SHIFT keys,
and press another key.

TIP It does not matter if you press SHIFT first or CTRL first — similarly for ALT.

You can, of course, add and change definitions, assigning commands to as many as 188 key
combinations.

TIP You should not change keys reserved by Windows, especially these:
F1 Display help.
CTRL+F4 Close the current window.
ALT+F4 Exit progeCAD.
CTRL+F6 Change focus to the next window.

Defining Shortcut Keys

Here are the steps to define shortcut keys. In this tutorial, you assign the Fillet command to
CTRL+SHIFT+F:

1. From the menu bar, select Tools | Customize | Menu. Select the Keyboard tab.

The shortcuts currently assigned are listed in the left-hand column. All of progeCAD’s
commands are listed in alphabetical order in the right-hand column.

2. Click New. Notice that text fields become available (ungray themselves) at the
bottom of the dialog box.

3. In the Press new shortcut key text entry box, press the key combination:
Press new shortcut key: (Press and hold the Ctrl Ctrl Ctrl Ctrl Ctrl key.)

 (Hold down the Alt Alt Alt Alt Alt key.
 (Press FFFFF, and then let go.)

Notice that Ctrl+Alt+F is added to the list of Defined Keys.

chapter 2 creating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliases 33

○ ○

Step 2.
Press keystroke

combination

Step 3.
Select command

Step 1.
Click New

Step 4.
Click Add Command

Step 5 (optional).
Edit macro

4. From the Available Commands list, select Fillet, the command you wish to assign
to a keystroke.

5. Click Add Command. Notice that ^C^C^C_FILLET appears in the Command box.

There are three ^Cs prefixing the Fillet command. They are short for “cancel.” (^C is
called a special character, or a metacharacter. You learn more about them in the
“Modifying Toolbars & Writing Macros” chapter.)

The underscore (_) “internationalizes” the command, so that the English version
works in progeCAD localized for other languages. This ensures the macro works on
all dialects of the CAD software.

6. Click Close to dismiss the dialog box.

7. Test the keystroke shortcut: hold down the CTRL and SHIFT keys, and then press F.
progeCAD should execute the Fillet command.

TIPS You can assign one or more keystroke shortcuts to commands.

Once a keystroke is assigned, it cannot be used with other commands.

Editing Keyboard Shortcuts

To edit keyboard shortcuts, follow these steps:

1. In the Customize dialog box’s Keyboard tab, select a keystroke under Defined Keys,
such as the CTRL+SHIFT+F we defined earlier.

2. Click the Command area, and then edit the command. You can backspace over the
command text to erase it, and then select another command.

3. Click Close to exit the dialog box.

○ ○

34 tailoring progeCAD

TIP If you wish to return progeCAD’s keyboard shortcuts to their original configuration,
click the Reset button. progeCAD displays a warning dialog box:

Click Yes, if you are sure. If you are not sure, click No, and then export the definitions using
the Export button before resetting the definitions.

Deleting Keyboard Shortcuts

To remove a keyboard shortcut, follow these steps:

1. In the Keyboard tab of the Customize dialog box, select a keystroke under Defined
Keys, such as the CTRL+SHIFT+F you edited above.

2. Click Delete. The shortcut is removed without warning.

3. Click Close to exit the dialog box.

Assigning Multiple Commands

You can assign more than one command to a keyboard shortcut. When two or more commands
are executed together, they are called a macro. (You learn more about macros in the “Modify-
ing Toolbars & Writing Macros” chapter.)

For example, you can copy all objects in the drawing to the Clipboard with two commands:
Select All to select all objects, followed by CopyClip to copy them to the Clipboard. These
two can be combined into a single keystroke, as follows:

1. In the Keyboard tab of the Customize dialog box, click New.

2. Press CTRL+SHIFT+A.

3. Under the Available Commands list, select Select All, and then click Add Com-
mand.

TIP The quick way to find a command in the l-o-n-g Available Commands list is to
type the first letter of the command. For example, type s to get to the commands starting
with “S.”

4. Now select Copy from Available Commands, and then click Add Command. Notice
that macros for both commands appear in the Command box:

^C^C^C_SELGRIPS;_all;;^C^C^C_COPYCLIP

The semicolon (;) is another metacharacter. It is equivalent to pressing Enter.

chapter 2 creating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliases 35

○ ○

5. Click Close.

6. Test the macro by pressing CTRL+SHIFT+A. progeCAD reports:
: _SELGRIPS
Select entities to display grips: _ALL
Select entities to display grips:
: _COPYCLIP

Try pasting the copied objects into another document using CTRL+V.

Command Aliases

In addition to keystroke shortcuts, progeCAD also allows you to define one- and multi-letter
command shortcuts called aliases. Aliases are abbreviations of command names, such as L
for the Line command and CP for Copy.

progeCAD predefines 245 aliases, and you can see the list of them by following these steps.

1. From the Tools menu, select Customize | Menu. (Or, enter the Customize
command in the command bar.) Notice the Customize dialog box.

○ ○

36 tailoring progeCAD

2. In the Customize dialog box, choose the Aliases tab.

In the Aliases column, you have the list of names of aliases already defined by the
progeCAD programming team. The Available Commands column lists the names of
all the commands found in progeCAD. (Not all commands have an alias assigned to
them.)

3. Let’s look at how aliases are linked to commands. Under the Aliases column, click an
alias, such as 3A. Notice that it is linked with the 3DArray command in the Avail-
able Commands column.

Aliases can be any length, but when they contain more than two or three characters, then they
start to defeat the purpose of aliases — being shortcuts to command names!

Still, there is one reason for having long alias names: it makes progeCAD commands compat-
ible with AutoCAD. For instance, 3DFace is an AutoCAD command, and the alias for the
progeCAD’s Face command. (Many of IntelliCAD’s commands have names identical to
AutoCAD’s, but it’s not clear to me why some are different. Aliases fix the problem.)

Creating New Aliases

Creating and editing aliases in progeCAD is simpler than in AutoCAD, where you have to
edit its acad.pgp file with a text editor. In progeCAD, you work with the Customize dialog
box — much easier!

For this tutorial, we create an alias “J” for the Join command.

Step 2.
Press key

Step 3.
Select command

Step 1.
Click New

Step 4.
Click Assign

1. In the Customize dialog box’s Aliases tab, click New.

2. In the Alias text entry box, enter J.

3. In the Available Commands list, select Join,

chapter 2 creating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliases 37

○ ○

4. Click Assign.

5. Click Close to dismiss the dialog box.

6. Test the alias by entering J and then pressing Enter. progeCAD should execute the
Join command.

TIPS Aliases can be used in toolbar and menu macros.

Unlike keyboard shortcuts, aliases cannot be macros. Aliases consist of a single
command only; no options, no multiple commands, no metacharacters.

Editing Aliases

To edit an alias, follow these steps:

1. In the Alias text entry box, enter the alias you wish to edit, such as the J we defined
above.

2. In the Available Commands list, select another command, and then click Assign.

Deleting Aliases

To remove an alias, follow these steps:

1. In the Alias text entry box, enter the alias you wish to delete, such as the J we used
earlier.

2. Click Delete. Notice that the alias is removed from the Aliases list.

3. Click Close to exit the dialog box.

Rules for Writing Aliases

Here are some suggestions Autodesk provides for creating command aliases:

• An alias should reduce a command to two characters at most.

• Commands with a control-key equivalent, status bar button, or function key do not
require a command alias. Examples of commands to avoid include the New com-
mand (already assigned to Ctrl+N), Snap (already on the status line), and Help
(already assigned to function key F1.

• Try to assign the first character of a command. If it is already taken by another
command, assign the first two, and so on. For example, C is assigned to the Circle
command, while CP is assigned to the Copy command.

• For consistency, add suffixes for related aliases. For example, H is assigned to the
Hatch command, so assign HE for HatchEdit.

○ ○

38 tailoring progeCAD

A

Align Al
Aperture Ap
Arc A
Area Aa
Array Ar
AttDef -At
AttDisp Ad
AttEdit -Ate
AttExt Ax

B

Backgrounds Background
Base Ba
Blipmode Bm
Block -B
Boundary Bo

Bpoly
-Boundary -Bo
Break Br

C

Chamfer Cha
Change -Ch
Circle C
Config Options

Pr
Preferences
Rconfig

Copy Co
Cp

Copylink Cl

D

DdAttDef At
DdAttE Ate
DdChProp Ch
DdEdit Ed
DdGrips Gr
DdInsert I
DdRename Ren
DdrModes Rm
DdSelect Se
DdUnits Un
Dist Di
Divide Div
Donut Bagel

Do
DText Dt
DView Dv
DxfIn Dn
DxfOut Dx

DimenSions

DimAligned Dal
Dimali

DimAngular Dan
Dimang

DimBaseline Dba
Dimbase

DimCenter Dce
DimContinue Dco

Dimcont
DimDiameter Ddi

Dimdia
DimEdit Ded

Dimed
Dimension Dim
DimLinear Dli

Dimlin
DimOrdinate Dor

Dimord
DimOverride Dov

Dimover
DimRadius Dra

Dimrad
DimStyle Dst

Dimsty
DimTEdit Dimted

E

EditLen Len
Lengthen

EditPline Pe
Pedit

Ellipse El
EntProp Ai_Propchk

Ddmodify
Mo
Mtprop

Erase E
ESnap -Os

-Osnap
Osnap

ExpBlocks B
Bmake
Xb
Xr

ExpDimStyles Ds
ExpFonts Ddstyle,

Expstyle
Expstyles

ExpLayers Ddlmodes
Explorer
La

Explode X
ExpLtypes Ddltype

Lt

Export Exp
ExpUcs Dducs

Uc
ExpViews Ddview

V
Extend Ex
Extrude Ext

F

Face 3dface
3f

Fillet F
Filter Fi
Font St

Style
Freehand Sketch

G

Grid G

H

Hatch H
HatchEdit He
Hide Hi

I

IdPoint Id
ImageAdjust Iad
ImageAttach Iat
ImageClip Icl
InfLine Xl

Xline
InsertObj Io
Interfere Inf
Intersect In
Isoplane Is

L

-Layer -La
Leader Le

Lead
Lighting Light
Line 3dline

L
Li

-Linetype -Lt
List Ls
LtScale Lts

progeCAD Aliases: Sorted by Command Name

chapter 2 creating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliases 39

○ ○

M

MatchProp Ma
Materials Rmat
Mesh 3dmesh
Mirror Mi
MLine Dl

Dline
Move M
MSnapShot Mslide
MSpace Ms
MText Mt

T
MView Mv

N

New N
NewWiz Ddnew

O

Open Imp
Import
Op

OpenImage Image
Orthogonal Or

Ortho

P

-Pan -P
P

Parallel O
Offset

PasteSpec Pa
Plane So

Solid
Point Po
Polygon Pol
Polyline Pl

Pline
PPreview Makepreview

Pre
Preview

PSpace Ps
Purge Pu

Q

QText Qt

R

Rectangle Rec
Rect
Rectang

Redraw R
RedrawAll Ra
Regen Re
RegenAll Rea
Region Reg
ReInit Ri
Rename -Ren
Render Rr
Revolve Rev
Rotate Ro

S

Save Sa
Scale Sc
Script Scr
Section Sec
SelGrips Selgrip
SetColor Col

Ddcolor
SetDim D

Ddim
SetESnap Ddesnap

Ddosnap
Os

SetRender Rpref
SetUcs Dducsp

Ucp
SetVar Set
Shade Sha
Slice Sl
Snap Sn
Spell Sp
Spline Spl
SplinEdit Spe
Stretch S
Subtract Su

T

Tablet Ta
TbConfig To
Text -T

Tx
Time Ti
Tolerance Tol
Torus Tor
Trim Tr

U

Undelete Oo
Oops

Union Uni
Units -Un

V

Vba Vbaide
View -V
ViewCtl Ddvpoint

Vp
Viewpoint -Vp

Vpoint
VpLayer Vl
VPorts Vport

Vw
VSnapshot Vs

Vslide

W

WBlock W
WCloseAll Closeall
Wedge We
WmfIn Wi
WmfOut Wo

X

XBind -Xb
XClip Clip
-Xref -Xr

Xa
Xattach

Z

Zoom Z

3

3dArray 3a
3dPoly 3p

○ ○

40 tailoring progeCAD

Sharing Shortcuts

progeCAD makes it easy to share keyboard shortcuts and aliases with other IntelliCAD and
AutoCAD users. (While AutoCAD can share its aliases with progeCAD, it cannot share its key-
board shortcuts.)

For example, a CAD manager writes a standard set of shortcuts, and then wants to install them
on all other computers running progeCAD. Here’s what the manager needs to do: (1) export
the shortcuts from his copy of progeCAD; and then (2) import the shortcuts to the copies of
progeCAD running on other computers. The sharing can be done with a USB key or over the
network.

Exporting Shortcuts & Aliases

Here are the steps to exporting shortcuts from progeCAD:

1. From the Tools menu bar, select Customize | Menu.

• To export keyboard shortcuts, choose the Keyboard tab.

• To export aliases, choose the Aliases tab.

2. Click the Export button.

3. Enter a file name in the dialog box. (Ignore the dialog box’s incorrect title; you don’t
“select file” in this step.) If necessary, change the folder name.

• Keyboard shortcuts can only be saved in ICK (IntelliCAD keyboard, not “icky”)
format.

• Aliases can be saved in ICA (IntelliCAD Aliases) or PGP (program parameters)
formats. To share aliases with AutoCAD users, select “AutoCAD Alias File (pgp)”
from the Save as type drop list.

4. Click Save.

chapter 2 creating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliases 41

○ ○

Importing Shortcuts and Aliases

With the keyboard and alias definitions stored in .ick and .ica files, you can copy the files to
other computers through the network, on USB plug, or via an email attachment.

To import the files into progeCAD, follow these steps:

1. From the Tools menu bar, select Customize | Menu.

• To import keyboard shortcuts, choose the Keyboard tab.

• To import aliases, choose the Aliases tab.

2. Click Import, and select the file name in the dialog box. (If necessary, change the
folder name.)

Step 2.
Select file

Step 3.
Click Open

Step 1.
Select folder

3. For aliases only:

Files of type: decide whether you want to import .ica aliases or AutoCAD .pgp
aliases.

Append to existing aliases: decide whether you want existing aliases overwritten
with the new ones, or if the new ones should be appended.

TIP If you used the Append to existing aliases option, you may, unfortunately, notice
double definitions.

If this causes a problem, use the Customize dialog box’s Reset button to clear the
duplicates, and then repeat the Import command without the Append option turned on.

4. Click Open. Notice the newly added shortcuts and/or aliases.

Importing Through the Command Bar

A pair of commands allow you to import shortcuts at the command-line:

ReadAccelerators prompts to open an .ick file to read keyboard accelerators.
Accelerator file name: (Enter path and name of .ick file.)

ReadAliases prompts to open an .ica file to read keyboard accelerators.
Alias file name: (Enter path and name of .ica file.)

○ ○

42 tailoring progeCAD

File Formats

As shown in the previous section, the Export button of the Customize dialog box saves key-
stroke shortcuts and aliases to files. In this section, we look at the formats of these files. Note
that “accelerator” is another term for “keyboard shortcut.”

Keystroke Shortcuts - .ick

After exporting keystroke shortcuts from progeCAD, the first few lines of the .ick file look like this:

[progeCAD Custom Keyboard File]
nAccelKeys=34

[AccelKey-0]
Command=^C^C^C_NEW
accel=9,78,19600

[AccelKey-1]
Command=^C^C^C_OPEN
accel=9,79,19601

Shortcuts that you create are added at the end of the file. progeCAD does not document the .ick
file, so here is an overview of the meaning of its contents.

TIP progeCAD hardwires its default keystroke shortcuts. This means that they are part
of the program code, and so this feature makes it easy to reset shortcuts to their original
condition.

nAccelKeys

The nAccelKeys item starts off the file (short for “number of accelerator keys”). It is the total
number of shortcuts in the .ick file. This value is generated by progeCAD.

nAccelKeys=34

[AccelKey-n]

The AccelKey- item indicates the start of the next accelerator key definition. progeCAD num-
bers them sequentially. Items in square brackets are comments.

[AccelKey-0]

Command

The Command item defines the macro executed by the shortcut. The macro uses the same
syntax and metacharacters as toolbar and menu macros. See Chapter 4 for details.

Command=^C^C^C_NEW

chapter 2 creating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliases 43

○ ○

Accel

The Accel item defines the keystroke that is the shortcut (short for “accelerator”).

accel=9,78,19600

progeCAD uses three code numbers to define accelerators:

• 9 — first number is a code for the prefix key, such as SHIFT and CTRL.

• 78 — second number is the code for key, such as A and F1.

• 19600 — third number appears to define the source of the shortcut.

Prefix keys have the following values:

Value Meaning

1 Unshifted
5 SHIFT

9 CTRL

13 CTRL + SHIFT

17 ALT

21 ALT + SHIFT

25 ALT + CTRL

29 ALT + CTRL + SHIFT

The letters A through Z have the same values as their ASCII codes, 65 (A) through 90 (Z).
Numerals also use ASCII codes, 48 (0) through 57 (9). Keys have the following values:

Value Meaning

Alpha-numeric Keys
48 Number 0
... ...
57 Number 9

65 Letter A
... ...
90 Letter Z

Function Keys
112 F1
113 F2
114 F3
115 F4
116 F5
117 F6
118 F7
119 F8
120 F9
121 F10
122 F11
123 F12

○ ○

44 tailoring progeCAD

Value Meaning

Cursor Keys
33 PgUp
34 PgDn
35 End
36 Home
37 Left
38 Up
39 Right
40 Down
45 Insert
46 Delete

Numeric Keypad
106 * (star)
107 + (plus)
109 - (minus)
111 / (divide)

To define shortcuts, you can use any combination of prefix keys (such as CTRL and ALT+SHIFT)
and another key, such as 9 or HOME.

For example, CTRL+9 would be 9, 57 while ALT+SHIFT+HOME is 21,36.

I am unable to determine the meaning of the third number to my satisfaction. For default
shortcuts, the number increments from 19600 to 19633. When I create shortcuts, however, the
number is always 0. My guess is that the third number identifies the source of the shortcut: an
IntelliCAD default (19600-range) or user-created (0).

Value Meaning

0 User-defined shortcut
19600 Default shortcut.

Aliases - .ica

After exporting aliases from progeCAD, the first few lines of the .ica file look like this:

[progeCAD Custom Alias File]
nAliases=255

[Alias-0]
Alias=3A
LocalCommand=3DARRAY
GlobalCommand=_3DARRAY

progeCAD does not document the .ica file, but it shares some similarities with the .ika file.
Here is an overview of the meaning of its entries.

nAliases=

The nAliases= item starts off the file, and is the total number of aliases in the .ica file. This
line is generated by progeCAD.

nAliases=255

chapter 2 creating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliasescreating keystroke shortcuts & aliases 45

○ ○

Alias=

The Alias= item is the one or more letter shortcut that represents the command. In the ex-
ample above, 3A is typed by the user on the keyboard, and progeCAD executes the 3DArray
command.

Alias=3A

LocalCommand= and GlobalCommand=

The LocalCommand= item represents the localized name of the command. IntelliCAD is
available in a variety of languages, such as English, German, and Spanish. If you were using,
say, the German release of IntelliCAD, then the German equivalent of the 3DArray command
would appear here.

LocalCommand=3DARRAY
GlobalCommand=_3DARRAY

The GlobalCommand= item reports the internationalized version of the command; notice
the underscore prefix. This is the (English) version of the command that works in all language
releases of IntelliCAD. For example, _3DArray works in the German version.

○ ○

46 tailoring progeCAD

one of the easiest areas of progeCAD to customize, in my opinion, are the toolbars. Tool-
bars give you single-click access to almost any command and group of commands. Instead of
hunting through progeCAD’s menus (is the Hatch command under Draw or Insert?) or
trying to recall the exact syntax of a typed command (was that Viewpoint or VPoint?), the
toolbar lets you collect your most-used commands in convenient strips.

A group of commands executed by a single keystroke or mouse click is called a macro. Figuring
in the time it takes to write and debug the macro, my rule-of-thumb — as you may recall from
an earlier chapter — is to write a macro any time I repeat the same action more than thrice.

12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567

In This Chapter

• Customizing the look of toolbars. • Writing toolbar macros.
• Creating new toolbars. • Sharing toolbars with others.
• Understanding the format of the .mnu file for toolbars, buttons, and flyouts.

C • H • A • P • T • E • R 3

Modifying Toolbars
& Writing Macros

chapter 3 modifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macros 47

○ ○

Customizing the Toolbar Look

There are two approaches to customizing toolbars. One approach rearranges the icons, per-
haps creating new toolbars that hold oft-used commands or perhaps some of the commands
not found on the toolbars that progeCAD displays by default.

The second approach writes macros that activate commands when toolbar buttons are clicked.

Rearranging Toolbars

When you start a fresh copy of progeCAD, it has several toolbars docked along the edges of the
drawing area, as illustrated below. “Docked” means the toolbars are attached to the edge of the
drawing area. When you move or change the size of the progeCAD window, docked toolbars
move along.

Above: Toolbars docked along the edges of the drawing area.
Below: Toolbars floating on the computer screen.

Toolbars don’t have to be docked; they can also float. When toolbars float, they are indepen-
dent of the progeCAD window. Move or resize the progeCAD window, and floating toolbars
remain where they are; they can even be dragged onto a second monitor. Floating toolbars can
be resized into square and long shapes, as illustrated above.

○ ○

48 tailoring progeCAD

Dragging & Moving Toolbars

Look closely at one end of each toolbar, and notice the double-line (shown in the figure below).
These are called drag handles. By dragging the toolbar by its handle, you move the toolbar
around the screen.

Drag Handle

You can relocate toolbars to other edges of the drawing area, or make the toolbars float. To
move toolbars:

1. Drag the toolbar away from the edge of the drawing area.

Notice the thin, gray, rectangular outline. This is called the dock indicator, and is
shown in the figure below. If you were to release the mouse button at this point, the
toolbar would jump right back to its docked position.

To prevent toolbars from docking, hold down the Ctrl key.

2. Drag the toolbar a bit further, and notice that the rectangular outline changes to a
thicker line. This is called the float indicator.

3. Let go of the mouse button now, and the toolbar floats.

4. With the toolbar floating, you can move the toolbar by dragging it around by its title
bar. To close a floating toolbar, click the red x button.

Close toolbarTitle bar

Resize toolbar

Additionally, you can resize the toolbar by grabbing at any of its edges. Notice the
two-headed cursor in the figure above; it indicates that you can resize the toolbar,
making it more rectangular or more square, as shown below.

chapter 3 modifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macros 49

○ ○

6. To dock the toolbar again, drag it by its title bar back against one edge of the drawing
area.

TIP Although not a toolbar, the Command Bar can be made to float and resize just like
one. To float, drag an edge into the drawing area.

Once floating, you can move the Command Bar window by its title bar, and resize it by its
edges — just like a toolbar.

To dock, drag the Command Bar window back into place.

The CmdBar command can force the command bar to float, dock, and hide:
Command : cmdbar
Floating/Lower/Upper/<Show Command Bar>: (Enter an option.)

Toggling the Display of Toolbars

The display of toolbars can be turned off and on, as follows:

1. Right-click any toolbar. Notice the shortcut menu that lists the names
of all the toolbars. (Command Bar and Status Bar do not refer to
toolbars.) The check mark, such as the one next to Standard, means the
toolbar is displayed.

2. To display a toolbar, select its name from the shortcut menu. Notice that
the toolbar appears, and the shortcut menu disappears.

To turn on other toolbars, repeat steps 1 and 2.

3. To turn off the display of a toolbar, repeat steps 1 and 2, but select
toolbar names with check marks.

As an alternative, you can turn off floating toolbars by clicking the x in
their upper right corner.

○ ○

50 tailoring progeCAD

TIP To turn on (or off) all toolbars at once, use the Toolbar command, as follows:
: toolbar
Enter Toolbar name(s) to show or hide, ALL, or <?>: all
Show or Hide: s

This command also turns on and off individual toolbars, which can be of use in macros and
LISP routines — and even toolbar macros.

Creating New Toolbars

You can create new toolbars with the buttons (commands) of your liking. In this tutorial, we
create a new toolbar that contains the XRef Manager button.

1. Right-click any toolbar. From the shortcut menu, select Customize. Notice the
Customize dialog box. If necessary, choose the Toolbars tab.

(If no toolbar is visible, use the Tools menu: select Customize and then Menu.)

2. To create new toolbars, simply drag icons out from the Customize dialog box. For this
tutorial, click on the Draw category, and then drag the XRef Manager button into the
drawing.

chapter 3 modifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macros 51

○ ○

Notice that progeCAD creates a new toolbar containing the button. And notice also
that the cursor has a button and a plus (+) sign, to remind you that you are adding
buttons.

TIP While the Customize dialog box is open, all toolbars are customizable — not just the
one you created. This means you can add and remove buttons from the other toolbars, such
as Draw, Standard, and so on.

4. You can drag buttons from the Customize dialog box into your new toolbar, or into
any other existing toolbar. As you do, notice that the I-beam cursor helps you posi-
tion the button among others on the toolbar.

5. To remove buttons, simply drag then out of the toolbar, and let go. Notice that the
cursor has a button and an x sign, to remind you that you are removing buttons.

6. When done, click Close to dismiss the Customize dialog box. Your new toolbar acts
like the any other toolbar in progeCAD.

TIP You can remove buttons from a toolbar at any time, as follows: Hold down the Shift
key, and then drag away the button from the toolbar.

To return removed buttons, go to Tools | Customize | Toolbars, and then repeat the
process described earlier.

Renaming Toolbars

progeCAD gives your new toolbar a generic name, such as “Toolbar 5.” Yawn! You can, fortu-
nately, change its name, as follows:

1. Right-click the toolbar, and select Toolbars.

2. Notice the Select Toolbars dialog box. Its primary purpose is to toggle the display of
toolbars. But, we’ll use it to change the name of your newly-created toolbar.

○ ○

52 tailoring progeCAD

Scroll down the Toolbars list until you find the name of your new toolbar.

3. Select the toolbar name. In the Toolbar Name text box, change the name to some-
thing meaningful — like “My Favorite Tools.”

4. Click OK.

Changing Button Size, Color, and Tooltips

The buttons on toolbars are 16 pixels in size. In some cases, that may be too small if your
eyesight is weak or if your monitor has a very high resolution, such as 1600x1200. You can
make the buttons 50% larger, as follows:

1. From the menu, right-click any toolbar, and select Toolbars.

2. In the Select Toolbars dialog box, select Large Buttons.

3. Click OK. Notice that the buttons grow larger.

You may have noticed the other options in the Select Toolbars dialog box, which have — in my
opinion — questionable usefulness:

• Color Buttons — when off, toolbar buttons are displayed in monochrome. This may
help someone who is colorblind? Or maybe some people find the colors annoying? I
don’t know.

• Show ToolTips — when off, tooltips are no longer displayed when the cursor
lingers over a toolbar button. I think this is a holdover from the days when computers
were slow, and it took a lot of energy to show those little yellow tags. Who knows?

chapter 3 modifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macros 53

○ ○

In either case, I always leave both options turned on.

TIP Make a big mistake in working with toolbars? Here is how to “fix” progeCAD by
setting it back to its straight-out-the-box nature:

In the Customize dialog box, click Reset and all your changes disappear — for
better or worse.

Writing Toolbar Macros

In addition to creating and changing toolbars, you can change the command(s) that lie behind
each toolbar button, as well as the conditions under which the commands are executed.

When you click on a toolbar’s button, progeCAD executes the macro (a series of one or more
commands) assigned to the button. Here is how to assign commands to buttons:

1. Bring back the Customize dialog box by right-clicking a toolbar, and then selecting
Customize. (Or, enter the Customize command at the ‘:’ prompt.)

2. Select a button on your newly created toolbar. (Don’t select a button in the Customize
dialog box — it won’t work). Notice that the bottom half of the Customize dialog box
becomes active (ungrays itself).

The dialog box has several areas that correspond to IntelliCAD’s user interface, as
shown by the brown lines in the figure below:

• ToolTip — text displayed by the button’s tooltip, a brief description of the button’s
function.

• Help String — text displayed on the status bar, a longer description of the button’s
function.

○ ○

54 tailoring progeCAD

• Command — collection of commands (macro) executed by clicking the button. The
figure below shows the macro that executes the Align command:

^C^C^C_ALIGN

Among the buttons:

• Close closes the dialog box, saving the changes you made.

• Import imports .mnu and .mns files generated by progeCAD and AutoCAD.

• Export exports a menu item in AutoCAD-compatible .mnu or .mns files.

• Reset changes the toolbars back to they way they first were.

Simple Macros

A simple macro consists an progeCAD command, prefixed by some unusual-looking characters:

^C^C^C_XRM

The characters have the following meaning:

^C — control character. It imitates pressing ESC on the keyboard, canceling the com-
mand currently in progress. The carat (^) alerts progeCAD that this is a control
character, and not a command.

(What does C have to do with the ESC key? In DOS-based software, we would press
CTRL+C to cancel a command; the C was short for “cancel.” Confusingly, CTRL+C is
the keyboard shortcut that means “copy to Clipboard”; in macros, it means “cancel”.)

^C^C^C — cancels existing commands. Most macros start with three ^Cs because
some progeCAD commands are three levels deep, like PEdit. When the command is
transparent (starts with the ' apostrophe), then you don’t prefix the macro with the
Cancel characters.

_ (underscore) — internationalizes the command. Prefixing the command name with the
underscore ensures the English-language version of the command always works,
whether used on a German, Japanese, or Spanish versions of progeCAD.

XRM — command name. In macros, you type progeCAD commands and their options
exactly the way you would type them on the keyboard at the ‘:’ command prompt.

Nothing is needed at the end to terminate the command. progeCAD automatically does the
“pressing Enter” for you.

chapter 3 modifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macros 55

○ ○

Intermediate Macros

You can include commands, options, and prompts for user input in macros. For example, this
macro draws an ellipse after the user specifies the center point and rotation angle:

^C^C^C_ELLIPSEELLIPSEELLIPSEELLIPSEELLIPSE;_CCCCC;_RRRRR

Here is what the macro means:

• Recall that the three ^C cancel any other command that might be active at the time.

• Ellipse is the name of the command, while the underscore (_) prefix international-
izes it.

• The semicolon (;) is just like pressing ENTER or the spacebar on the keyboard.

• The C is the Ellipse command’s Center option. Just as you enter the abbreviation of
options at the keyboard, so too you can use the same abbreviation in the macro — or
you can spell out the entire option name, such as Center.

• The backslash (\) pauses the macro, waiting for the user to pick a point on the
screen, or enter x,y-coordinates at the keyboard. Two backslashes in a row means
that two picks are required.

• The R is the Ellipse command’s Radius option.

Let’s look again at the macro, this time in parallel with the command’s prompts:
^C^C^C (Press EscEscEscEscEsc, Esc Esc Esc Esc Esc, EscEscEscEscEsc.)
_ELLIPSEELLIPSEELLIPSEELLIPSEELLIPSE; : ellipse ellipse ellipse ellipse ellipse (Press ENTERENTERENTERENTERENTER.)
_CCCCC; Arc/Center/<First end of ellipse axis>: c c c c c (Press ENTERENTERENTERENTERENTER.)
\ Center of ellipse: (Pick point.)
\ Endpoint of axis: (Pick point.)
_RRRRR Rotation/<Other axis>: r r r r r (Press EnterEnterEnterEnterEnter.)

Rotation around major axis: (Pick point.)

A final semicolon (i.e. ENTER) and backslash (i.e. pause) are not needed at the end of the macro,
because progeCAD automatically adds the equivalent of the symbology, and it no longer needs
to wait for the user.

TIPS You can include aliases and LISP routines in menu macros. See the “Creating
Keystroke Shortcuts & Aliases” and “Programming LISP” chapters to learn about them.

You cannot, unfortunately, customize the icons displayed by toolbar buttons.

Toolbar Macros Are No Panacea

Toolbar macros are best suited for quick’n dirty programming. There are drawbacks, however,
to using toolbar macros. The length of the macro is limited to a maximum of 255 characters.
You are limited to using the icons supplied with progeCAD. The variety of control characters is
extremely limited compared with IntelliCAD’s other programming languages.

Despite these drawbacks, the toolbar is the fastest and most convenient way to minimize key-
strokes and mouse clicks in progeCAD.

○ ○

56 tailoring progeCAD

Sharing Toolbars

progeCAD allows you to share toolbars with other progeCAD and AutoCAD users. As the CAD
manager, you’ve created an office standard for toolbars that need to be installed on all drafting
computers running progeCAD. Here’s how to save from your computer, and then load the
toolbars onto the other computers.

Saving Toolbars

1. From the Tools menu, select Customize, and then choose the Toolbars tab.

2. Click Export.

3. Notice the Select Toolbars dialog box. progeCAD allows you to select which toolbars
to export. Select one or more toolbar names, and then click OK.

4. Notiece the Select Toolbar File dialog box. Enter a file name in the dialog box. If
necessary, change the folder name.

5. Click Save. progeCAD saves the selected toolbars in an .mnu file.

Importing Toolbars

With the toolbar(s) stored in an .mnu file, you can copy the file to other computers through the
network, on USB key, or via an email attachment. The .mnu file can be imported into AutoCAD
and progeCAD.

For progeCAD, follow these steps:

1. From the Tools menu, select Customize , and then select the Toolbars tab.

2. Click Import, and select the file name in the dialog box. (If necessary, change the
folder name.)

chapter 3 modifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macros 57

○ ○

3. Notice the Append to existing toolbars option, located at the bottom of the Select
Toolbar File dialog box. You’ll need to decide whether you want existing toolbars
replaced by the new ones, or if the new ones should be added.

*

4. Click Open. Notice the newly added toolbars.

TIP If you used the Append to existing toolbars option, you may, unfortunately,
notice double definitions. If this causes a problem:

Use the Customize dialog box’s Reset button to clear the duplicates, and then
repeat the Import command without the Append option turned off.

○ ○

58 tailoring progeCAD

.mnu File Format

As shown in the previous section, the Export button of the Customize dialog box saves tool-
bars in AutoCAD’s .mnu file format. It’s curious switch: progeCAD exports its menus, aliases,
and keystroke shortcuts in formats of its own design (see Chapters 2 and 4), but exports tool-
bars in AutoCAD’s format.

After exporting toolbars from progeCAD, the first few lines of the .mnu file look like this:

***TOOLBARS
**STANDARD
TBAR_Standard [_Toolbar ("Standard", _Top, _Show, 111, 142, 1)]
ID_New [_Button ("New", ,)]^C^C^C_NEW
ID_Open [_Button ("Open", ,)]^C^C^C_OPEN
ID_Save [_Button ("Save", ,)]^C^C^C_QSAVE

***HELPSTRINGS
TBAR_Standard [Standard]
ID_New [Creates a new drawing]
ID_Open [Opens an existing drawing]
ID_Save [Saves the current drawing]

General Format

The general format is:

TOOLBARSTOOLBARS***TOOLBARS***TOOLBARS***TOOLBARS
**********name
TBARTBARTBARTBARTBAR_name [_Toolbar ("[_Toolbar ("[_Toolbar ("[_Toolbar ("[_Toolbar ("titleBar," ," ," ," ," defaultPosition,,,,, defaultVisibility,,,,, xCoord, , , , , yCoord,,,,, rows)])])])])]

ID_ID_ID_ID_ID_cmdName [_Button ("[_Button ("[_Button ("[_Button ("[_Button ("cmdName",",",",", smallIcon,,,,, largeIcon)])])])])]macro
ID_ID_ID_ID_ID_cmdName [_Flyout ("[_Flyout ("[_Flyout ("[_Flyout ("[_Flyout ("cmdName",",",",", smallIcon,,,,, largeIcon, _, _, _, _, _otherIcon, TBAR_, TBAR_, TBAR_, TBAR_, TBAR_name)])])])])]macro

HELPSTRINGSHELPSTRINGS***HELPSTRINGS***HELPSTRINGS***HELPSTRINGS
TBAR_TBAR_TBAR_TBAR_TBAR_name [[[[[name]]]]]

ID_ID_ID_ID_ID_cmdName [[[[[helpString]]]]]

ToolbarXcoord,
Ycoord

cmdName

titleBar

Rows

_Flyout

_Button

helpString

In general, a toolbar definition consists of these items:

• Toolbar name and position information.

• A list of buttons and associated macros, and optional flyouts.

chapter 3 modifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macros 59

○ ○

• Help string for each button.

For whatever reason, the help strings are listed separate from toolbar buttons; the two are
linked by the ID_cmdName. If progeCAD can’t find a match, no help is displayed on the status
bar.

The tooltip wording is based on the cmdName.

Toolbar Format

***TOOLBARS
**********name
TBARTBARTBARTBARTBAR_name [_Toolbar ("[_Toolbar ("[_Toolbar ("[_Toolbar ("[_Toolbar ("titleBar," ," ," ," ," defaultPosition,,,,, defaultVisibility,,,,, xCoord, , , , , yCoord,,,,, rows)])])])])]

***TOOLBARS

The section of the .mnu file that defines toolbars must start with ***TOOLBARS.

**name

The **name item identifies the toolbar to other parts of the .mnu file. The **-prefix is an
AutoCAD standard that identifies a subsection of the menu file, individual toolbars, in this
case. (The ***-prefix identifies major sections, such as toolbars, menus, and buttons.)

TBAR_name

The TBAR_name item identifies the toolbar for other parts of AutoCAD’s .mnu file.

_Toolbar

The _Toolbar item indicates that the buttons following are part of a toolbar.

"titleBar"

titleBar specifies the words that appear on the toolbar’s title bar. Recall that the title bar only
appears when the toolbar is floating.

defaultPosition

The defaultPosition item specifies where the toolbar is positioned when progeCAD starts up.
Valid values are:

• Floating.

• Top (docked at the top of the progeCAD window).

• Bottom (docked at the bottom of the window).

• Left (docked along the left edge).

• Right (docked along the right).

○ ○

60 tailoring progeCAD

defaultVisibility

The defaultVisibility item specifies the visibility of the toolbar when progeCAD starts up. Valid
values are:

• Show (toolbar is displayed).

• Hide (toolbar is not displayed).

xCoord and yCoord

The xCoord and yCoord item specify the position of the toolbar when progeCAD starts up.

The x-coordinate is of the left edge of the toolbar; the y-coordinate is of the top edge. The
distance is measured in pixels from the left and top edges of the desktop.

rows

The Rows item specifies the number of rows the toolbar has when progeCAD starts up. When
docked, rows = 1.

Button Format

ID_ID_ID_ID_ID_cmdName [_Button ("[_Button ("[_Button ("[_Button ("[_Button ("cmdName",",",",", smallIcon,,,,, largeIcon)])])])])]macro

ID_cmdName

The ID_cmdName item identifies the button; it associates the button with the help string,
later in the .mnu file. Only the dash (-) and the underscore (_) can be used as punctuation.

_Button

The _Button item identifies this as a standard button, and not a flyout button.

cmdName

The cmdName item displays the tooltip when the cursor pauses over the button. Only the dash
(-) and the underscore (_) can be used as punctuation.

smallIcon

The smallIcon item identifies the name of the small (16x15) bitmap icon. Because progeCAD
does not allow you to change the icon associated with a button, this item is blank.

largeIcon

The largeIcon item identifies the name of the large (24x22) bitmap icon. Because progeCAD
does not allow you to change the icon associated with a button, this item is blank.

macro

The macro item specifies the command(s) to execute when the user clicks the button. Toolbar
macros use the same syntax and metacharacters as menu macros.

chapter 3 modifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macrosmodifying toolbars & writing macros 61

○ ○

Flyout Button Format

ID_ID_ID_ID_ID_cmdName [_Flyout ("[_Flyout ("[_Flyout ("[_Flyout ("[_Flyout ("cmdName",",",",", smallIcon,,,,, largeIcon, _, _, _, _, _otherIcon, TBAR_, TBAR_, TBAR_, TBAR_, TBAR_name)])])])])]macro

The format of a flyout is identical to that of a button, with these differences:

_Flyout

The _Flyout item identifies this as a flyout button.

_otherIcon

The _otherIcon item determines which icon is displayed “on top” of the flyout. The possible
values are:

• OwnIcon (the parent icon).

• OtherIcon (the most recently selected child icon).

TBAR_name

The TBAR_name item is the name of the toolbar to display as the flyout. It references any
other toolbar name that starts with the **-prefix.

Help String Format

***HELPSTRINGS
TBAR_TBAR_TBAR_TBAR_TBAR_name [[[[[name]]]]]

ID_ID_ID_ID_ID_cmdName [[[[[helpString]]]]]

***HELPSTRINGS

The helpstring section must start with ***HELPSTRINGS. In AutoCAD’s menu file, help strings
are used by dropdown menu items, as well as by toolbar buttons.

TBAR_name [name]

The TBAR_name [name] item identifies the toolbar by name.

ID_cmdName

The ID_cmdName item identifies the name of the button.

[helpString]

The [helpString] item is the text of the help provided on the status bar.

○ ○

62 tailoring progeCAD

in releases of AutoCAD prior to 2006, upon which progeCAD is based, the .mnu file controls
the menu bar, all toolbars, “accelerator” keys (keyboard shortscuts), image tiles (an old form of
dialog box), tablet overlays (used with digitizing tablets), and the rarely seen screen menu.
(Since AutoCAD 2006, a different file is used, named .cui.) progeCAD is able to read AutoCAD’s
.mnu files.

progeCAD is different. The default menus, toolbars, keyboard shortcuts, and aliases are hard-
coded in the program. You makes changes to them via the Customize dialog box, as you saw for
toolbars in the previous chapter.

In this chapter, we look at customizing the menus.

12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567

In This Chapter

• Modifying the menu bar. • Sharing menus.
• Editing macros. • Importing AutoCAD menus.
• Editing help strings. • Understanding the menu file format.
• Adding new menu items.

C • H • A • P • T • E • R 4

Customizing Menus

chapter 4 customizing menuscustomizing menuscustomizing menuscustomizing menuscustomizing menus 63

○ ○

Modifying the Menu Bar

progeCAD lists many of its commands on the menu bar. Sometimes, however, you may want to
change the menu. Adding commands to menus is particularly common for third-party devel-
opers. For example, Print3D adds its own menu to progeCAD.

The following tutorial shows you how to add commands to the menu.

1. Menu customization takes place in the Customize dialog box. To open it, from the
Tools menu, select Customize. (Alternatively, enter Customize at the ‘Command:’
prompt, or right-click any toolbar and then select Customize.)

If necessary, click the Menus tab.

2. On the left, the Menu Tree shows the current menu structure. Notice that names like
File, Edit, and so on match the names on progeCAD’s menu bar.

3. Notice that each menu e in the Menu Tree has a + next to it. Click + next to File to
reveal the items in the dropdown menu.

○ ○

64 tailoring progeCAD

Opened up, the menu tree reveals a color code:

• Bright green dots mean the items appear in menus.

• Dark green dots mean the items appear in ActiveX containers.

• Bright red dots mean the items do not appear on the menu bar, but may appear in
other menus.

• Dark red dots mean them items appear in context menus exclusively (shortcut
menus).

When you make changes, however, the colors of the dots do not, unfortunately,
change — until after you close and then reopen the Customize dialog box.

Examing Menu Names

Let’s look at how names are presented in menus. In the Customize dialog box, click on the File
menu’s Open item.

Notice that the “name” consists of several unusual characters, such as &Open...\tCtrl+O. The
ones in boldface are called metacharacters. Let’s look at how they relate to the menu:

Save &As...

&Open...\tCtrl+O

chapter 4 customizing menuscustomizing menuscustomizing menuscustomizing menuscustomizing menus 65

○ ○

Underline - &

The ampersand (&) is in front of the letter that should be underlined.

Underlined letters allow you to access commands from the keyboard using the ALT key. For
example, to access the New command on the menu, you hold down the ALT key, press F (for
File) and then press N (for New).

The convention is that the first letter of the name is underlined for mnemonic purposes. For
example, New, Open, and Save. When there are two commands in one menu starting with
the same letter, then you underline a different letter for the command appearing second. For
example, the File menu has Save As, which appears as Name=Save &As...

Dialog Box - ...

The ellipsis (...) is for commands open dialog boxes. For example, Save As... displays a
dialog box, whereas Save does not.

By itself, the ellipsis does nothing; it is merely a user interface element. You have to include
code in the macro to open the dialog box.

Tab Separator - \t

The tab (\t)separates the menu item name from the keyboard shortcut, such as Ctrl+N. It
serves to right-justify the shortcut from the command name.

New... and Ctrl+N

The words New... and CTRL+N are displayed by the menu. They are not, however, the
command(s) that are executed when you select New from the File menu. To change the com-
mand, you need to edit the macro.

Caution: It is possible to change the keyboard shortcut with the Tools | Customization | Key-
board dialog box, so that the CTRL-key displayed by the menu does not match reality. For ex-
ample, after deleting or changing the definition of CTRL+N, it still appears in the menu, but no
longer opens a new drawing.

Editing Macros

To edit macros associated with menu items, follow these steps:

1. Select the menu item related to the macro.

2. Edit the macro, found in the Command text box at the bottom of the dialog box.

When user selects the item from the menu, this macro (series of commands) is executed. For
example, selecting New from the File menu executes the PNew command (the New Drawing
wizard).

○ ○

66 tailoring progeCAD

Like the name, the macro contains metacharacters, as in ^C^C_pnew. The macro syntax has the
following meaning:

2. ...and then edit
the macro here.

1. Select the menu
item here...

Cancel - ^C

The ̂ C metacharacter means “cancel.” The caret (̂) is the equivalent of the Ctrl key; together
with C, ^C is the same as pressing the ESC key to cancel a command.

The convention is to start every macro with three ^C to cancel deeply nested commands, such
as PLine.

Transparent - '

You do not, of course, prefix macros with ^C if the command is to be operated transparently,
such as '_REDRAW. The apostrophe metacharacter (') means the command can be used during
another command. Not all progeCAD commands operate that way.

Internationalize - _

The underscore (_) metacharacter “internationalizes” the command. progeCAD is available
in a variety of (human) languages. By prefixing commands with the underscore, the command
word is understood, even if it is used by the Spanish or German releases of progeCAD.

Enter - ;

The semicolon (;) metacharacter is equivalent to press the ENTER key. For example, the macro
for the View | Zoom | Zoom In menu item looks like this:

'_ZOOM;;;;;2x

In the example above, the Zoom command accesses its 2x option to zoom into the drawing.
You typically use the semicolon to separate a command from its option.

chapter 4 customizing menuscustomizing menuscustomizing menuscustomizing menuscustomizing menus 67

○ ○

The convention is to not include the semicolon at the end of the macro, because progeCAD
automatically adds the ENTER.

Pause - \

The backslash (\) metacharacter pauses the macro for user input. In the example below, the
macro pauses twice, because there are two backslashes in a row:

^C^C^C_DIMLINEAR;_ROTATED

The DimLinear command waits for the user to pick two points, as follows (commands and
options are in blue, pausing for user input are shown in cyan):

: _DIMLINEARDIMLINEARDIMLINEARDIMLINEARDIMLINEAR
ENTER to select entity/<Origin of first extension line>: (User picks first point.)
Origin of second extension line: (User picks first point.)
Angle/Text/Orientation of dimension line: Horizontal/Vertical/Rotated: _ROTATEDROTATEDROTATEDROTATEDROTATED
Angle of dimension line <0>:

The backslash metacharacter forces the macro to wait for either of two events to occur, and
then carries on:

• The user picks a point on the screen.

• The user enters a value at the keyboard, and then presses ENTER.

TIP You can type commands, options, and metacharacters directly into the Command
text box.

As an alternative, you can select commands from the Available Commands list,
and then click Add Command. The advantage is that progeCAD automatically adds the ^C
and _ metacharacters for you.

Editing the Help String

If you change the purpose of a menu item, then you may need to change the help string.

As shown by the illustration above, the help string is displayed on the status bar when the user
selects a menu item. Edit the text in the Help String textbox.

Changing Options

progeCAD lets you determine when and where a menu item appears. The options are shown
when you select a menu item, and then click Options. The choices may, unfortunately, appear
overwhelming to you. For the following figure, I selected Dimensions under Menu Tree,
and then clicked Quick Dimensions.

○ ○

68 tailoring progeCAD

Let’s take a look at what all these options mean.

Experience Level

• Beginner

• Intermediate

• Advanced

progeCAD has the ability to hide advanced commands from neophyte users. Use the Config
command to set the experience level. When the Beginner option is not checked, for example,
the associated menu item does not appear when Experience level is set to Intermediate or
Advanced. The figure below shows the Dimension menu for the three experience levels:

Beginner Intermediate Advanced

chapter 4 customizing menuscustomizing menuscustomizing menuscustomizing menuscustomizing menus 69

○ ○

MDI Window

• At least one open

• No windows open

The MDI Window settings determine when the menu item appears, depending on whether a
window is open.

MDI is short for “multiple document interface,” a fancy term that means progeCAD can open
more than one drawing at a time. (By the way, when a program can only open one document at
a time, it has SDI, or “single document interface.”)

Most commands make no sense when no windows are open (when no drawings are loaded), so
they disappear, as shown at the left, below:

Menu bar is sparse when no windows are open.

Full menu when at least one window is open.

ActiveX In-Place Activation

• Server, embedded

• Server, in-place

• Container

The ActiveX in-place activation settings determine which menu items are available when an
progeCAD drawing is placed in another document. The figure below shows an progeCAD draw-
ing in Visio, with some of the progeCAD toolbars and the menu bar replacing those of Visio.

○ ○

70 tailoring progeCAD

Checked-State and Grayed-Stated Variables

• Checked-State Variable

• Grayed-State Variable

The Checked-State Variable option places a check mark in front of a menu item, as shown
by the items on the View | Display menu, below. The convention is that the check mark
indicates a value is turned on.

Whether the check mark is displayed depends on the value of the related system variable. When
it is on (1), then the check mark is shown; when off (0), the check mark is not shown.

You can use any system variable in progeCAD, although the check mark is mostly used with
toggle system variables. (Toggle system variables are ones that are either one or off; they don’t
have any other value.)

The Grayed-State Variable turns the menu item gray, depending on the value of the system
variable. The convention is that a gray menu item indicates it is not available. Grayed-State can
make use any system variable in progeCAD.

Both Checked-State and Grayed-State make use of the following metacharacters:

Value - &

The ampersand (&) lets you access specific values of a system variable. For example, UNDOCTL&0

means that the Undo menu item is gray when system variable UndoCtl equals 0. To find the
valid values, look up the online help for system variables.

Not - !

The exclamation mark (!)means “not.” It is useful for system variables that are not toggles;
when a system variable has more than two settings, you can use ! when you want the menu
item to be gray only for one setting.

For example, !VIEWMODE&1 means that the Pan menu item would be gray when ViewMode is
not 1 (1 = perspective mode is on). In other words, you can’t pan in a perspective view.

chapter 4 customizing menuscustomizing menuscustomizing menuscustomizing menuscustomizing menus 71

○ ○

Context Menu Entity Availability

• Individual entities

• All Entities

• Exclude from multiple entity selection

Context Menu Entity Availability is used in conjunction with the Modify menu. When
the user selects one or more objects, and then presses the right mouse button, progeCAD dis-
plays a context menu that is essentially the Modify menu; see figure below.

If the command works with all entities, then select the All Entities option.

When the command works with specific entities only, then select those entities. For example,
the Fillet command works with lines, arcs, circles, and other entities, but not with traces,
dimensions, and text.

The context menu appears when you right-click a selected object.

To make the command available only when a single entity is selected, use the Exclude from
multiple entity selection option.

TIP Only commands appearing in the Modify menu appear in the context menu.

Miscellaneous

• Context Menu Exclusive

• Temporary Popup

• Hide

The Context Menu Exclusive option means the command appears only in the context menu,
as described above under Context Menu Entity Availability.

I have no idea what the Temporary Popup option is for.

The Hide option hides menu items from view. This option is useful for when you are working
on a macro that you do not want users to use, yet.

○ ○

72 tailoring progeCAD

Adding New Menu Items

To add a new menu item:

1. Under Menu Tree, select the menu item above which the new one is to appear.

2. Click Insert and
then select an option

1. Select a
menu item

2. Click Insert, and select one of the options:

• Menu Item inserts a menu item.

• Menu Sub-Item creates a parent menu, from which you add submenus.

Careful: Existing menu items are turned into parent menus, and lose their associated
macro.

• Spacer places a gray line in the menu, to separate groups of menu items.

The Context Menu Item and Context Menu Sub Item options puzzle me,
because they don’t seem to work.

3. Notice that a new menu item is inserted in the Menu Tree, but it has no name. Name
it.

4. Specify the macro. The easy way to do this is to select a command (from Available
Commands) and then click Insert Command.

5. Write the help text. This is the text that appears on the status line.

chapter 4 customizing menuscustomizing menuscustomizing menuscustomizing menuscustomizing menus 73

○ ○

5. Edit the
macro, if
necessary

4. Select a command, and
then click Add Command

3. Name the
menu item

6. Write the
help text

7. Select options

8. Click Close to
save changes

7. If there are special conditions as when and how the menu item is to appear, click
Options. The default settings are that new menu items appear when the Advanced
experience level is selected, and when at least one window is open.

8. To save your valuable work, click Close.

Deleting Menu Items

To remove a menu item, select it in the Menu Tree, and then click Delete. progeCAD asks if
you really want to do this: “Are you sure you want to remove the item?” You can delete indi-
vidual menu items, as well as submenus.

Did you make a horrible mistake? There is no undo button. Instead, click the Reset button to
return the menus to their fresh-out-of-the-box nature. You will, however, lose any editing
changes you may have wanted to keep.

The workaround is to use the Export button to export the menu as an .icm file, and then
perform major surgery in the Customization dialog box. If you make a big mistake, click the
Import button and make sure Append to Current Menu option is turned off.

○ ○

74 tailoring progeCAD

ICM Menu File Format

When you use the Customize dialog box’s Export command, progeCAD saves the menu as an
.icm file (no, not short for “Inter Continental Missile,” but “Intelli Cad Menu”). The first few
lines of a typical .icm file are shown below:

[IntelliCAD Custom Menu File]
nMenuItems=283

[MnuItem-0]
Name=&File
TearOffName=POP1
Command=POP1
Visibility=12

[MnuItem-1]
Name=&New... Ctrl+N
Command=^C^C^C_NEWWIZ
HelpString=Creates a new drawing
Visibility=191
SubLevel=1

The .icm file is not documented, so the following sections explain each entry.

nMenuItems

The nMenuItems item is a count of the total menu items in the file. It is generated by
progeCAD. Changing the number from a valid value causes progeCAD to crash when import-
ing the modified .icm file.

Name

The Name item is the name displayed on the menu bars and menu items:

• On the menu bar, Name=&File

• On menu items, Name=&New... \t Ctrl+N

(The \t does not appear. It indicates the presence of a tab space.) The syntax has the following
meaning:

Alt-Shortcut - &

The ampersand (&) is in front of the letter that should be underlined. Undermined letters
allow you to access commands from the keyboard using the ALT key. The convention is that the
first letter of the name is underlined for mnemonic purposes. When there are two commands
in one menu starting with the same letter, then you underline a different letter for the com-
mand appearing second. For example, the File menu has Save and Save As, which appears
as Name=Save &As...

chapter 4 customizing menuscustomizing menuscustomizing menuscustomizing menuscustomizing menus 75

○ ○

Dialog Box - . . .

The ellipsis (. . .) is used when the command opens a dialog box. In itself, the ellipsis does
nothing. For example, Save As... displays a dialog box, whereas Save does not.

Right-Justified - \t

The tab (not visible) separates the menu item name from the keyboard shortcut, such as CTRL+N.

Caution: It is possible to change the keyboard shortcut with the Tools | Customization | Key-
board dialog box, so that the CTRL-key displayed by the menu does not match reality. For ex-
ample, after deleting or changing the definition of CTRL+N, it still appears in the menu, but no
longer opens a new drawing.

TearOffName

The TearOffName item is, I believe, a placeholder that tells progeCAD this menu item is not
a command, but another menu element, such as a menu title or a parent menu.

TearOffName=POP1

The figure below shows both, neither of which executes a command; rather both display “an-
other menu.”

To create a parent-child menu, see SubLevel, later in this section.

AutoCAD uses the POPn notation, which is short for “popdown menu,” to identify menus,
allowing one menu to be called by another. The equivalent menu item in progeCAD,
Command=POP1, does not, however, work.

Command

The Command item is the name used by the menu bars and menu items:

• On the menu bar, Command=POP1

• On menu items, Command=^C^C^C_NEWWIZ

For the menu bar, I don’t know what the “Command=Pop1” macro means. I suppose that it
executes itself, or may be dummy expression.

For the menu items, Command is the macro executed by selecting the menu item. (A “macro” is
one or more commands executed in sequence.) The macro syntax has the following meaning:

○ ○

76 tailoring progeCAD

Cancel - ^C

The ^C metacharacter means “cancel.” The caret (^) is the equivalent of the CTRL key; to-
gether with C, ^C is the same as pressing the ESC key to cancel a command. (CTRL+C harkens
back to the days of DOS, when it meant “cancel.” Note that this works only in macros; at ‘:’
command prompt, CTRL+C means “copy to the Clipboard.”)

Command=^C^C^C_PNEW

The convention is to start every macro with three ^C to cancel deeply nested commands, such
as PLine. (You do not, of course, prefix macros with ^C if the command is to be operated
transparently, such as Command='_REDRAW.)

Internationalize - _

The underscore (_) metacharacter “internationalizes” the command.

Command=^C^C^C_PNEW

progeCAD is available in a variety of (human) languages. By prefixing commands with the
underscore, the command word is understood, even if it is used by the Spanish or German
releases of progeCAD.

Enter - ;

The semicolon (;) metacharacter is equivalent to press the ENTER key. For example, the macro
for the View | Zoom | Zoom In menu item looks like this:

Command='_ZOOM;2x

In the example above, the Zoom command accesses its 2x option to zoom into the drawing.
You typically use the semicolon to separate a command from its option.

The convention is to not include the semicolon at the end of the macro, because progeCAD
automatically adds the ENTER.

Pause - \

The backslash (\) metacharacter pause the macro for user input. In the example below, the
macro pauses twice, because there are two backslashes in a row:

Command=^C^C^C_DIMLINEAR;_ROTATED

The DimLinear command waits for the user to pick two points. The backslash metacharacter
forces the macro to wait for either of two events to occur, and then carries on:

• The user picks a point on the screen.

• The user enters a value at the keyboard, and presses ENTER.

Visibility

The Visibility item is a bit code that specifies when a menu item is displayed.

Visibility=111

chapter 4 customizing menuscustomizing menuscustomizing menuscustomizing menuscustomizing menus 77

○ ○

The bit codes are:

Bit Code Comment

Experience Level
1 Beginner
2 Intermediate
4 Advanced

MDI Window
8 At least one open
16 No windows open

ActiveX In-Place Activation
32 Server, embedded
64 Server, in-place
128 Container

Other
256 Context menu exclusive
512 Hide
1024 Temporary popup

Bit codes are added together to indicate multiple settings. For example, if a menu item were to
be available for all three experience levels, the value of the bit code would be 7 (1 + 2 + 4).

Experience Level

The visibility settings for experience level indicate whether the menu item appears in menus
set up for Beginner, Intermediate, and Advanced levels. (The experience level is set with
the Tools | Options | General command.) For example, the Ellipse command appears for
all three levels, but Elliptical Arc appears only when experience level is set to Intermediate
and Advanced.

MDI Window

The MDI window settings determine when the menu item appears, depending on whether a
window is open. MDI is short for “multiple document interface.” There are two bit codes:

• 8 means the menu item appears when at least one window is open.

• 16 means the menu item appears even when no window is open.

Most commands make no sense when no windows are open (when no drawings are loaded), so
they disappear.

ActiveX In-Place Activation

The ActiveX in-place activation settings determine which menu items are available when an
progeCAD drawing is placed in another document. There are three bit codes:

• 32 means the command appears when the drawing is an embedded server.

• 64 means the menu item appears when the drawing is an in-place server.

• 128 means the menu item appears when the drawing is a container.

○ ○

78 tailoring progeCAD

Other

The other settings determine when the menu item appears in three miscellaneous cases. There
are three bit codes:

• 256 means the menu item appears only in context menu (a.k.a. shortcut menu).

• 512 means the menu item is hidden.

• 1024 means the menu item appears only in a temporary popup.

HelpString

The HelpString item displays a line of text on the status line explaining the menu item. For
example,

Name=&Polyline
Command=^C^C^C_POLYLINE
HelpString=Draws a polyline, including straight and arc

displays the text “Draws a polyline, including straight and arc” on the status line when Polyline
is selected.

SubLevel

The SubLevel item determines if the item appears on the parent menu or the child menu; or,
if it appears in the main menu or the submenu. There are two values in common use, but you
can use additional digits for deeper menus:

• 1 means the item appears in the parent menu.

• 2 means the item appears in the child (or sub) menu.

• 3 means the item appears in the sub-sub menu.

• and so on.

The following code shows the Zoom submenu illustrated above:

Name=&Zoom
TearOffName=POP9
SubLevel=1

Name=&Zoom
Command='_ZOOM
SubLevel=2

chapter 4 customizing menuscustomizing menuscustomizing menuscustomizing menuscustomizing menus 79

○ ○

AddSpacerBefore

The AddSpacerBefore item draws a gray line to separate menu items, as shown below.

AddSpacerBefore=1

The value, 1, seems to be a dummy. It appears to make no difference if the value is 0, 1, 2, or 3.

EntityVisibility

The EntityVisibility item is used in conjunction with the Modify menu. When the user se-
lects one or more objects, and then presses the right mouse button, progeCAD displays a con-
text menu that is a copy of the Modify menu. The commands listed on the menu depend on
several conditions:

• The setting of the EntityVisibility bit code(s), as listed in the table below.

• Whether bit code -2147483648 is set (exclude from multiple entity selection).

• The setting of Visibility bit codes.

For example, the Copy command works with all entities, but the Break command does not.

Bit Code Meaning

1 Point
2 Line
4 Ray
8 Xline

16 Arc
32 Circle
64 Ellipse

128 Shape
256 Trace
512 Solid

1 024 3D face
2 048 3D solid
4 096 2D polyline
8 192 3D polyline

16 384 Polyface mesh
32 768 3D mesh
65 536 Text

131 072 Insert (block)
262 144 Attribute definition
523 288 Dimension

○ ○

80 tailoring progeCAD

1 048 576 Leader
2 087 152 Tolerance
4 194 304 Spline
8 388 608 Mtext

16 777 216 Mline
33 554 432 Group

536 870 911 All entities
-2147 483 648 Exclude from multiple entity selection

Note that “Exclude from multiple entity selection” carries a negative value.

ChekVar

The ChekVar item places a checkmark in front of a menu item. The convention is that the
check mark indicates a value is turned on. In this case, the display of fills is turned on.

ChekVar=FillMode

Whether the check mark is displayed depends on the value of the system variable. When
FillMode is on (1), then the check mark is shown; when FillMode is off (0), the check mark
is not shown.

You can use any system variable in progeCAD, although the check mark is mostly used with
toggle system variables. (Toggle system variables are ones that are either one or off; they don’t
have any other value.) There are some cases where other system variables are used with
ChekVar, such as showing which entity snap modes are turned on.

ChekVar uses the same metacharacters as GrayVar; see the next item. ChekVar is short for
“CHEcK VARiable” (notice there is a c missing in “chek,” so don’t misspell it!).

GrayVar

The GrayVar item turns the menu item gray, depending on the value of the system variable.

GrayVar=!ViewMode&1

The convention is that a gray menu item indicates it is not available. GrayVar can make use
any system variable in progeCAD, along with the following metacharacters:

Value - &

The ampersand (&) lets you access specific values of a system variable. For example:

Name=&Undo
GrayVar=UNDOCTL&0

means that the Undo menu item is gray when system variable UndoCtl equals 0. To find the
valid values, look up the online help for system variables. UndoCtl, for example, uses these bit
codes: 0=undo turned off; 1=undo turned on; 2=single undo; 4= auto undo.

chapter 4 customizing menuscustomizing menuscustomizing menuscustomizing menuscustomizing menus 81

○ ○

Not - !

The exclamation mark (!)means “not.” It is useful for system variables that not toggles; when
a system variable has more than two settings, you can use ! when you want the menu item to be
gray only for one setting. For example:

Command='_PAN
GrayVar=!VIEWMODE&1

means that the Pan menu item is gray when ViewMode is not 1 (1 = perspective mode is on). In
other words, you can’t pan in a perspective view.

○ ○

82 tailoring progeCAD

lintypes in progeCAD can be simple or complex.

• Simple linetypes are one-dimensional, consisting of lines, gaps, and dots put
together in a variety of patterns.

• Complex linetypes include 2D shapes and text, such as railroad tracks and — CW
— for a coldwater line.

progeCAD comes with a number of linetypes, stored in the icad.lin and icadiso.lin files found
in the C:\Users\login\AppData\Roaming\progeSOFT\progeCAD 2009\R9\PRENG folder.

12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567

In This Chapter

• Commands and system variables affecting linetypes.
• Special case of polylines. • Testing new linetype.
• Compatibility with AutoCAD. • Creating linetypes with text editors.
• Customizing linetypes. • Understanding the linetype format.
• Editing linetype definitions. • Complex (2D) linetypes.

C • H • A • P • T • E • R 5

Customizing
Linetypes

chapter 5 customizing linetypescustomizing linetypescustomizing linetypescustomizing linetypescustomizing linetypes 83

○ ○

Commands That Affect Linetypes

Linetypes are defined in files external to progeCAD, with an .lin extension. It’s always been a
source of irritation to me that I gotta load the file into the drawing before I can use any line-
type. The Linetype command loads the linetypes, and lists the linetypes already loaded.

The ExpLTypes command (short for “explore linetypes”) displays progeCAD Explorer with
linetypes. In addition, it loads linetypes, creates new linetypes, renames and deletes them, and
purges unused linetypes from the drawing.

Like colors, you can apply linetypes to individual objects with the Entity Properites toolbar.
Or, through the Layer command, you can assign all objects located on a layer to have the same
linetype.

Like text, linetypes are tricky to size. You have to size the gaps and dashes just the right way.
Too small, and the line looks solid (but takes a suspiciously long time to redraw). Too large,
and the line looks solid, too. It’s the LtScale command (short for “linetype scale”) that lets you
set the scale of the linetype. Typically, the scale used for text and dimensions and hatch pat-
terns also applies to the linetype. Nice, eh?

System Variables that Affect Linetypes

Because linetypes are affected by scale, paper space becomes a problem. A linetype scale that
looks fine in model space is going to look wrong in paper space. The solution comes with the
PsLtScale system variable (short for “paper space lintype scale”). Its job is to assign the
viewport’s scale factor to linetypes.

There are a couple of other system variables that relate to linetypes. CeLtype (short for “cur-
rent entity linetype”) holds the name of the linetype currently in effect. LtScale stores the
current linetype scale factor (default = 1.0).

The Special Case of Polylines

Then there’s the trick when it comes to polylines. To understand the problem, understand how
progeCAD generates a linetype. The software attempts to apply linetypes as nicely as it can,
based on the length of the object and the linetype scale factor. Essentially, it starts at one end of
the object and works its way to the other end. Then progeCAD centers the linetype pattern so
that it looks nice and even at both ends. You never get the linetype abruptly ending midway
through at the end of a line.

○ ○

84 tailoring progeCAD

Consider, then, the polyline. While it looks like one long connected line-arc-spline, it has many
vertices, even when you do not see them. progeCAD faithfully restarts the linetype pattern
each time it encounters a vertex. When the vertices are close together, progeCAD never gets
around to restricting the pattern, resulting in a solid or continuous line. This would drive some
people nuts, like cartographers who use polylines for drawing contours.

The solution is the PlineGen system variable (short for “polyline generation”). When set to
off (the default), progeCAD works as before, generating the linetype from vertex to vertex.
When changed to on (1), progeCAD generates the linetype from one end of the polyline to the
other end — ah, instant relief!

Compatibility with AutoCAD

progeCAD includes all of AutoCAD’s simple linetypes, and a few of AutoCAD’s complex line-
types. If shapes in complex linetypes are displayed as ? (question marks), this means progeCAD
was unable to find the ltypeshp.shx file. The result is shown below:

Customizing Linetypes

progeCAD has three ways of creating a custom linetype: (1) through the progeCAD Explorer;
(2) at the command prompt; and (3) with a text editor. Let’s look at the first one first.

progeCAD Explorer

Here is how to create a custom linetype with Explorer:

1. From the Format menu, select Explore Linetypes.

(Or, select Tools | progeCAD Explorer , and then select Linetypes. Or, enter the
ExpLTypes command.)

2. Right-click anywhere in the right-hand pane. From the shortcut menu, select New |
Linetype.

chapter 5 customizing linetypescustomizing linetypescustomizing linetypescustomizing linetypescustomizing linetypes 85

○ ○

Notice that the New Linetype dialog box. It has two fields: (1) Linetype descrip-
tion; and (2) Linetype definition. Naming the linetype comes later.

3. Enter a linetype description, such as “Sample linetype.”

The description is any phrase that will be useful in the future for identifying the
linetype. Other examples include:

Boundary
Domestic Hot Wtr Return
Steam Condensate
Long dashed short dashed line 2mm

4. Enter the linetype definition, such as 0.33,-0.33.

The definition consists of numbers and punctuation only. progeCAD prevents you
from entering text, which means you cannot use the Explorer to create complex
lintypes. Follow this code:

• Positive numbers indicates dashes — for example, 0.25 means a dash
0.25 units long.

• Negative numbers indicates gaps — for example, -0.1 is a gap 0.1 units
long.

• Zeros draw a dot — a 0 is a single dot.

• Commas — separate the codes. For example, .25,-.1,0,-.1

And follow this rule:

• You can’t use the same code twice in a row. It just doesn’t make sense to have two
gaps or two lines in a row, does it? Instead, code that gap or line twice as long.

For this tutorial, I entered:
0.33,-0.33

This draws a line 0.33 units long, followed by a gap 0.33 units long (specified by the
negative sign). The pattern will repeat itself automatically.

5. Click OK.

○ ○

86 tailoring progeCAD

Notice that the description you gave the linetype appears under Linetype Descrip-
tion, while the code you entered appears as dashes and gaps under Linetype Ap-
pearance.

6. progeCAD gives a generic name to the linetype, NewLinetype1. You can edit it to a
more meaningful name.

Later in this chapter, you learn how to create linetypes with the Linetype command, and how
to edit the icad.lin file directly.

Editing the Linetype Definition

You may have noticed that I did not mention the two buttons in New Linetype dialog box. I’ll
get to them now.

1. Click the New Item button on the toolbar. (Alternatively, from Explorer’s menu
bar, select Edit | New | Linetype.)

2. In the New Linetype dialog box, click Choose from file.

Notice Linetype Front dialog box. It lists linetypes found in the icad.lin or files.
(Click Browse to choose a different .lin file, including those from AutoCAD.)

TIPS progeCAD stores both simple and complex linetypes in icad.lin or icadiso.lin.

In addition, progeCAD imports linetypes from AutoCAD.

chapter 5 customizing linetypescustomizing linetypescustomizing linetypescustomizing linetypescustomizing linetypes 87

○ ○

3. Select a linetype (by name, not by pattern), and then click OK.

4. Back in the Explorer, notice that the linetype is listed, and that you can immediately
edit the name, if you so wish.

TIP You can sort the list of linetypes by clicking the headers. Click the same header to
sort in reverse order:

• Linetype name sorts them in alphabetical order by name.
• Linetype Description in order of description.
• But clicking Linetype Appearance doesn’t sort.

5. Whether imported or newly created by you, you can edit the linetype: Right-click the
name of the linetype, and then select Properties. (Alternatively, click the Prop-
erties button on Explorer’s toolbar.)

6. Notice that you can change the description and the definition. The change takes
effect when you exit this Linetypes dialog box by clicking the x button in the upper
right corner.

(The pushpin button allows this dialog box to hang around, but I fail to see the point,
since changes don’t take place until you dismiss the dialog box.)

It might be fixed in your copy of progeCAD, but I could not get the Properties dialog box to
accept changes to complex linetypes.

Deleting Linetype Definitions

It’s an unpleasant task, but sometimes you gotta do it: erase linetypes.

1. In Explorer, select the linetype to delete.

2. Right-click, and select Delete. (Alternatively, press the Del key on your keyboard.
Or, click the angry red X button on the toolbar.)

○ ○

88 tailoring progeCAD

Notice that progeCAD flashes an impressive looking dialog box warning you of your
action. progeCAD erases the linetype definition along with all objects drawn with
that definition, which I think is somewhat excessive.

The better option is to click Change. This not only saves the entities from eternal
destruction, but allows you to substitute a different linetype.

3. Double-click one of the linetypes listed by the Change button. Back in Explorer, the
selected linetype is gone, and entities have taken on the other linetype.

chapter 5 customizing linetypescustomizing linetypescustomizing linetypescustomizing linetypescustomizing linetypes 89

○ ○

At the Command Prompt

Follow these steps to create a new linetype on-the-fly, using the Linetype command:

1. Start progeCAD, and then enter the Linetype Create command:
Command: linetype linetype linetype linetype linetype
Linetype: ? to list/Create/Load/Set: ccccc

2. Give a name to the linetype, which can be as long as 31 characters.
Name for new linetype: dit-dahdit-dahdit-dahdit-dahdit-dah

Unlike creating a custom hatch pattern on-the-fly, progeCAD actually stores the new
linetype in a .lin file, letting you reuse it later.

3. At this point, progeCAD pops up the Create or Append Linetype dialog box. This lets
you place the custom linetype in a new .lin file, or else have progeCAD append the
linetype description to the icad.lin.

I find it easiest to keep all linetypes in one file, so I recommend accepting icad.lin —
or icadiso.lin if I tend to work with ISO (international standard) linetypes.

4. After clicking the Save button to dismiss the dialog box, progeCAD checks:
One moment... Checking existing linetypes for "dit-dah".

If two linetypes have the same name, progeCAD would only ever read the first one it
comes across. If you accidently (or otherwise) enter a linetype name that already
exists — such as Dashed — progeCAD warns:

One moment... Checking existing linetypes for "dashed".
DASHED already exists. Current definition is:
DASHED
__ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
0.50,-0.250
Overwrite? <N>:

In this case, press ENTER and then try naming again.

5. Next, describe the linetype with any words you want up to 47 characters long.
Linetype description: . __ . __ . __ . __

A good descriptive text would be the pattern you plan to create, using dots, under-
lines, and spaces.

○ ○

90 tailoring progeCAD

6. Finally! You get to define the linetype pattern. But, what’s this A? The letter A forces
the linetype to align between two endpoints. That’s what causes the linetypes start
and stop with a dash, adjusted to fit. The A could also stand for “actually” because,
actually, I don’t have a choice when I create a linetype on-the-fly: progeCAD forces
the letter A on me.

Linetype definition (positive numbers for lines, negative for spaces):
A,

Type the codes after the A, as follows:
A, .25,-.1,0,-.1.25,-.1,0,-.1.25,-.1,0,-.1.25,-.1,0,-.1.25,-.1,0,-.1

I could go on for a total of 78 characters but I won’t.

7. I press ENTER to end linetype definition, and I’m done.
Linetype "dit-dah" was defined in C:\progeCAD\Icad.lin.
Linetype: ? to list/Create/Load/Set: (Press Enter.)

Well, not quite. I still need to test the pattern. By the way, new linetypes are added to the end of
the icad.lin or icadiso.lin file.

Testing the New Linetype

It is important to always test a new customization creation. As simple as they are, linetypes are
no exception. Test the Dit-Dah pattern, as follows:

1. Use the Linetype Load command to load the pattern into drawing:
: linetypelinetypelinetypelinetypelinetype
Linetype: ? to list/Create/Load/Set: LLLLL
Enter linetype to load: dit-dah dit-dah dit-dah dit-dah dit-dah

2. Up pops the Select Linetype File dialog box. Select icad.lin, and then click Open.
progeCAD confirms:

Linetype DIT-DAH loaded.

3. Use the Set option to set the linetype, as follows:
?/Create/Load/Set: sssss
New entity linetype (or ?) <BYLAYER>:

4. Here you can type either the name of a loaded linetype (such as “dit-dah”) or type ?
to see which linetypes are already loaded.

5. This time, get serious and set the current linetype to “dit-dah”:
?/Create/Load/Set: sssss
New entity linetype (or ?) <BYLAYER>: dit-dah: dit-dah: dit-dah: dit-dah: dit-dah
?/Create/Load/Set: (Press ENTER.)

6. Now, draw a line, and appreciate the linetype it is drawn with. Your debugging
session is over.

chapter 5 customizing linetypescustomizing linetypescustomizing linetypescustomizing linetypescustomizing linetypes 91

○ ○

Creating Linetypes with the Text Editor

You can edit the icad.lin linetype file directly to create custom linetypes. Here’s how:

1. Start a text editor (not a word processor), such as NotePad.

2. Load the icad.lin file from the C:\Users\login\AppData\Roaming\progeSOFT
\progeCAD 2009\R9\PRENG folder. (Replace “login” with the login name you use
with Windows.)

3. When you scroll down to the end of the file, you see the Dit-Dah pattern you defined
as per the earlier tutorial.

4. You can modify an existing linetype, or add a new linetype. The process is exactly the
same as when you did it within progeCAD, with two exceptions: (1) progeCAD isn’t
there to prompt you; and (2) You don’t need to use the “A” prefix.

5. Save the .lin file with the same name (icad.lin) or a new name, then test it within
progeCAD.

○ ○

92 tailoring progeCAD

The Linetype Format

The linetype definition consists of two lines of text:

Line1: Header

Line 1 is the header, such as “*dit-dah,. _ . _ . _” , where:

* (asterisk) — indicates the start of a new linetype definition. DIT-DAH Name of the
linetype.

, (comma) — separates the name from the description.

. __ . __ — describes the linetype (to a maximum of 47 characters), which is displayed
by the Linetype ? command.

Line 2: Data

Line 2 is the data, such as “A, .25,-.1,0,-.1”, where:

A The “A” is the optional alignment flag, which forces progeCAD to start and end the
linetype with a line.

.25The first number is the length of a dash when LtScale = 1.0; every linetype data line
must begin with a dash.

-.1 Numbers with negative signs specify the length of a gap when LtScale = 1.0; every
linetype data line must follow the initial dash with a gap.

0 Zeros draw dots.

You can use a semicolon (;) to prefix any line as a comment line. Anything after the semicolon
is ignored by progeCAD.

Complex (2D) Linetypes

“Complex” linetypes are 2D: they can wiggle back and forth (within limits) and include text
characters. Truth be told, that’s all they are: text — or, more accurately, shapes. See Chapter 7
for full information on coding shapes.

The complex linetype is a mixture of 2D shapes and the 1D linetype codes — the dash, gap, and
dot you learned of earlier. The 2D shapes can be a combination of: (1) text characters from an
.shx font file; and/or (2) shapes from an .shx shape file.

progeCAD 5 supports complex linetypes, storing their definition in the icad.lin or icadiso.lin
file. Shown below are samples.

chapter 5 customizing linetypescustomizing linetypescustomizing linetypescustomizing linetypescustomizing linetypes 93

○ ○

Notice that the “square” linetype uses square brackets to create the box effect: [and]. The “zig
zag” linetype uses the slash and backslash characters: / and \. You might be able to think of
other ASCII characters to use in a creative manner, such as the small letter o and the tilde, ~.

TIPS progeCAD is unable to compile source .shp files into .shx., which are needed to
create custom complex linetypes. This means that you need AutoCAD to access the Compile
command, which performs the compilation.

If all you need is text in a complex linetype, then you can use any .shx font file.

Embedding Text

Two of the linetypes included with progeCAD, the gas line and the hot water supply, simply
combine a dash and gap with the letters GAS and HW from the Standard text style (as defined
by the txt.shx font file). Here is the code for hot water:

*HOT_WATER, Hot Water ----HW----HW----HW----HW----HW----HW--
A,1.0,-.25,["HW",STANDARD,S=.2,R=0.0,X=-0.1,Y=-0.1]["HW",STANDARD,S=.2,R=0.0,X=-0.1,Y=-0.1]["HW",STANDARD,S=.2,R=0.0,X=-0.1,Y=-0.1]["HW",STANDARD,S=.2,R=0.0,X=-0.1,Y=-0.1]["HW",STANDARD,S=.2,R=0.0,X=-0.1,Y=-0.1],-.40

Much of this looks familiar, with the exception of the stuff between the square brackets, shown
in boldface. That allows the embedding of text in a linetype, and here’s what it means:

○ ○

94 tailoring progeCAD

Text - "HW"

"HW" prints these letters between the dashes.

Text Style - STANDARD

STANDARD applies this text style to the text. This is optional; when missing, progeCAD uses
the current text style, stored in system variable TextStyle.

Text Scale - S=.2

S=.2 is the text scale factor. It means one of two things:

• When the height defined by the text style is 0 (as is often the case), then S defines
the height; in this case, the text is drawn 0.2 units tall).

• When the text style height is not 0, then this number multiplies the text style’s
height; in this case, the text is drawn at 0.2 times (or 20%) of the height defined in
the text style.

Text Rotation - R=0.0

R=0.0 rotates the text relative to the direction of the line; in this case, 0.0 means there is no
rotation. The default measurement is degrees; other forms of angular measurement are:

• r for radian, such as R=1.2r (there are 2pi radian in a circle).

• g for grad, such as R=150g (there are 400g in a circle).

This parameter is optional and can be left out. In that case, progeCAD assumes zero degrees.

Absolute - A=0.0

(Optional) A=0.0 rotates the text relative to the x-axis (the “A” is short for absolute). This
ensures the text is drawn always oriented in the same direction, no matter the angle of the line.
By the way, the rotation is always performed within the text baseline and capital height. That’s
so the text isn’t rotated way off near the orbit of Pluto.

X and Y Offset - X=-0.1 and Y=-0.1

X=-0.1 shifts the text in the x-direction from the linetype definition vertex, which helps center
the text in the line. Y=-0.1 shifts the text in the y-direction from the linetype definition vertex.
In both cases, the units are in the linetype scale factor, which is stored in system variable
LtScale.

Summing up, you can create a text-based linetype with a single parameters, such as ["HW"], or
you can exercise fine control over the font, size, rotation, and position with the six parameters
listed above. progeCAD can work with any .shx font file you have on your computer.

chapter 5 customizing linetypescustomizing linetypescustomizing linetypescustomizing linetypescustomizing linetypes 95

○ ○

Embedding Shapes

The other possibility is to embed a shape from an .shx file. This is not as easy as embedding
text, because progeCAD does not (yet) compile source shape files. Here is how a complex line-
type definition would look with an embedded shape, using shapes found in the ltypeshp.shx
file:

*SHAPES,Shape SSS
A,.0001,[SSS,ltypeshp.shxSSS,ltypeshp.shxSSS,ltypeshp.shxSSS,ltypeshp.shxSSS,ltypeshp.shx,x=-.01,s=.02],-.0001

Let’s look at the relevant parts that differ from embedding text, as highlighted in boldface
above:

Shape Name - SSS

SSS is the name of the shape. When progeCAD cannot find the shape, it draws a ? instead.

Shape File - ltypeshp.shx

Ltypeshp.shx is the name of the file holding the shapes.

TIP Complex linetypes must start and end with a dash or a gap. You cannot write a
linetype definition that consists of shapes only.

○ ○

PB tailoring tailoring tailoring tailoring tailoring progeCADprogeCADprogeCADprogeCADprogeCAD

despite their seeming complexity, hatch patterns consist of three basic elements: dashes,
gaps, and dots. To create repeating patterns, the basic definition is offset by distance and an
angle.

Even though progeCAD comes with 560 patterns, your office drafting standard may require
a specific pattern. In this chapter, we look at how to create hatch patterns, and edit existing
patterns.

12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567

In This Chapter

• Where do hatch patterns come from? • Adding custom patterns to the palette.
• Creating custom hatch patterns. • Creating hatch patterns.
• Using the Hatch and BHatch commands. • Creating slides.
• Understanding the icad.pat file. • Catalog of hatch pattern samples.
• Tips on creating pattern codes.

C • H • A • P • T • E • R 6

Making Hatch
Patterns

chapter 6 making hatch patternsmaking hatch patternsmaking hatch patternsmaking hatch patternsmaking hatch patterns 97

○ ○

ere Do Hatch Patterns Come From?

Hatch patterns are defined in files external to progeCAD called icad.pat, icadiso.pat, and
extras.pat. You can have many pattern files, each with an extension of .pat. It is easier,
however, to keep all patterns in a few files.

progeCAD stores its patterns files in the C:\Program Files \progeSOFT\progeCAD 2009 Pro
ENG\User Data Cache\patterns folder. Unlike linetypes, the pattern file is loaded automati-
cally the first time you use the Hatch or BHatch commands (short for “boundary hatch”).

In addition, progeCAD uses .sld slide files to show pattern samples in the Pattern tab of the
Boundary Hatch dialog box — one slide file per pattern sample.

The hatching patterns consist only of lines, line segments (dashes), dots, and gaps; progeCAD
cannot create hatch patterns made of circles and other nonlinear objects. progeCAD can
solid-fill areas in any of its 255 colors.

How Hatch Patterns Work

The Hatch command creates hatch patterns at the command line; BHatch displays a dia-
log box to do the same thing.

When you apply a hatch to an area, progeCAD generates an repeating pattern of parallel
lines and gaps from the definition in the .pat file. The pattern comes to a stop when it reaches
a boundary; if progeCAD cannot detect a boundary, it refuses to place the pattern.

Once the hatch is in place, you can use the Move command to move the hatch pattern
elsewhere in the drawing, if you so chose.

progeCAD can create non-associative and associative hatch patterns through the Pattern
Properties tab of the Boundary Hatch dialog box:

• Non-associative means the shape of the pattern’s area is fixed; when you change
the boundary, the pattern does not change. This is useful when you want the
pattern to remain fixed.

• Associative hatching means the pattern’s shape updates as you change the boundary.

○ ○

PB tailoring tailoring tailoring tailoring tailoring progeCADprogeCADprogeCADprogeCADprogeCAD

progeCAD treats both kinds of hatch pattern as a block. You can use the Explode command
to explode the block into its constituent lines. progeCAD cannot edit a hatch pattern; the
workaround is to erase, and reapply.

progeCAD has several system variables that report the most-recent setting of hatch pattern
parameters:

HpName Specifies the name of the current hatch pattern (default = ANSI31).
HpBound Determines the boundary entity created by the BHatch commands: 0 = regions; 1 = polylines
HpDrawOrder Controls the display order of hatches:

0 Hatches are not assigned draw order.
1 Hatches are displayed behind of all other entities.
2 Hatches are displayed in front of all other entities.
3 Hatches are displayed behind their boundaries.
4 Hatches are displayed in front of their boundaries.

HpStyle Determines the hatch pattern style: 0 = standard pattern style; 1 = outer pattern
HpScale Specifies the current scale factor (default = 1.0).
HpAng Specifies the current angle of the hatch pattern in degrees (default = 0).
HpDouble Determines whether the hatch is applied a second time at 90 degrees.
HpSpace Specifies the spacing between hatch pattern lines (default = 1.0 units).
SnapAng Specifies the rotation angle of the hatch pattern in degrees (default = 0).
SnapBase Specifies the x,y-coordinates of the origin for the hatch pattern (default = 0,0).

The last two system variables let you control where the hatch pattern begins. Normally, the
pattern assumes an origin of (0,0) and an angle of 0 degrees. But if you need to precisely
control the placement of the pattern, change the values of SnapAng and SnapBase, as
required.

chapter 6 making hatch patternsmaking hatch patternsmaking hatch patternsmaking hatch patternsmaking hatch patterns 99

○ ○

Creating Custom Hatch Patterns

progeCAD has two ways to create a custom hatch pattern: (1) simple patterns at the ‘Com-
mand:’ command prompt or dialog box; and (2) edit the .pat files with a text editor. We look
at both methods in this chapter.

To create simple hatch patterns, use the Hatch or BHatch commands. progeCAD does not,
unfortunately, save the fruit of your labors (unlike when you create a custom linetype with
Linetype.) For this reason, think of the first method of creating custom hatch pattern on-the-fly.

Hatch Command

Your options for creating a hatch on-the-fly are limited to simple patterns. Here’s how,
using the Hatch command:

1. Start progeCAD.

2. Enter the Hatch command:
Command: hatchhatchhatchhatchhatch

3. Select the & option:
Hatch: ? to list patterns/SEttings/& for lines/Preview/STyle/<Pattern name> <>: &&&&&

4. Specify the three parameters for the custom hatch pattern.

a. First, the angle.
Proceed/Angle for pattern <0>: 4545454545

TIP The hatch angle is measured from the setting of system variable SnapAng (0
degrees, by default, which is in the direction of the positive x-axis). When SnapAng is
set to something other than 0, the angle you specify here is added to the value stored
in SnapAng.

b. Second, the spacing between parallel lines
Space between standard pattern lines <1.0000>: 22222

c. Third, decide if you want the pattern crosshatched. That means a second pattern
is applied at 90 degrees to the first pattern.

Cross-hatch area? <No>: yyyyy

5. Finally, you select the object or boundary to hatch:
ENTER to apply hatch/<Starting point>: (Press Enter to apply the pattern.)

progeCAD draws the pattern, but — as mentioned earlier — your custom hatch isn’t saved to
the .pat file.

○ ○

PB tailoring tailoring tailoring tailoring tailoring progeCADprogeCADprogeCADprogeCADprogeCAD

BHatch Command

To create a custom hatch pattern with the BHatch command is a bit different; it’s more like
filling out a form:

1. From the Draw menu, select Hatch. (Or enter the BHatch command.)

2. When the Boundary Hatch dialog box appears, select the Pattern Properties tab.

3. From the Pattern Type drop list, select User Defined.

4. progeCAD allows you to type values for Angle, Spacing, and Cross-hatched.
Enter a value for each of these.

5. Select the Boundary tab.

6. Click the Select Area button, and then select the area you want hatched.

7. Press ENTER to return to the dialog box, and then click OK. progeCAD applies the
custom pattern.

Caution: Whether you use Hatch or BHatch, in neither case is the hatch pattern you
created saved in a .pat file — unlike linetypes.

chapter 6 making hatch patternsmaking hatch patternsmaking hatch patternsmaking hatch patternsmaking hatch patterns 101

○ ○

Understanding the .pat Format

Let’s now dig into the contents of the icad.pat file to get a better understanding of how a
pattern is constructed.

1. Start a text editor (not a word processor), such as Notepad.

2. Open the icad.pat file from the C:\Users\login\AppData\Roaming
\progeSOFT\progeCAD 2009\R9\PRENG\patterns folder. (Replace “login” with
the login name you use to access the computer.)

3. Scroll down a bit, and take a look at the seemingly-incomprehensible series of
numbers and punctuation contained by this file. I’ve reproduced the first dozen
lines here:

*SOLID, Solid fill
45,0,0,0,0.1
*ANGLE, Angular Steel
0, 0,0, 0,.275, .2,-.075
90, 0,0, 0,.275, .2,-.075
*ANSI31, ANSI
45, 0,0, 0,0.125

Comment and Header Lines

The definition of a hatch pattern consists of two or more lines of text. The first line is called
the header, such as *SOLID, Solid fill.

Comment - ;

The semicolon (;) indicates a comment line, such as ; Note: Dummy pattern description used for

'Solid fill'. That lets you include notes to yourself that are ignored by progeCAD.

Start of Definition - *

The asterisk (*) is important because it signals to progeCAD the start of a new hatch pattern
definition.

Pattern Name

Following the asterisk comes the name for the hatch pattern, such as SOLID. The name must
be unique in the file. If it isn’t, progeCAD uses the first pattern it finds by that name.

The comma following the name merely separates the name from the description. The comma
is optional; it doesn’t have to be there: a space works just as well.

Description

The text following the pattern name is the description displayed by the Hatch ? command,
such as “Solid fill.” This description is also optional, but highly recommended. You are lim-
ited to a maximum of 80 characters for the name, comma, and the description. If you need
more room for the description, use comment lines, such as:

; Note: Dummy pattern description used for 'Solid fill'.
*SOLID, Solid fill

○ ○

PB tailoring tailoring tailoring tailoring tailoring progeCADprogeCADprogeCADprogeCADprogeCAD

The Hatch Data

With the comment lines and the header line out of the way, let’s get down to the nitty-gritty
hatch pattern data and how it is coded. Lines 2 and following are the data, such as:

0, 0,0, 0,.275, .2,-.075 90, 0,0, 0,.275, .2,-.075

Every line of data uses the same format:

angle, xOrigin, yOrigin, xOffset, yOffset [, dash1, ...]

angle

Angle is the angle at which this line of hatch pattern data is displayed. The “0” means the
hatch line is drawn horizontally; a “90” means the line is drawn vertically, and so on.

A comma (,) separates the numbers.

xOrigin and yOrigin

The xOrigin specifies that the first line of the hatch pattern passes through this x-coordinate.
The value of the yOrigin means that the first line of the hatch pattern passes through this y-
coordinate.

xOffset and yOffset

The xOffset specifies the distance between line segments, a.k.a. the gap distance. You use
this parameter only to specify the offset for vertical or diagonal lines (To specify the distance
between dashes, use the dash1 parameter.) In most hatch patterns, xOffset has a value of
0.0. Even though this parameter is rarely used, it is not optional.

The yOffset is the vertical distance between repeating lines; this parameter is used by every
hatch pattern.

dash1,...

dash1 defines the dashes in the hatch pattern line (the code is the same as for linetypes):

• A positive number, such as 0.25, is the length of the dash.

• A 0 draws a dot.

• A negative number, such as -0.25, draws a gap.

TIP The dot drawn by the hatch pattern may create a problem when it comes time
to plot. If you find that the dots in a hatch pattern are not printed, use a very short line
segment, such as 0.01, instead of a 0.

When you are finished editing a pattern, save the .pat file.

chapter 6 making hatch patternsmaking hatch patternsmaking hatch patternsmaking hatch patternsmaking hatch patterns 103

○ ○

Tips on Creating Pattern Codes

Some miscellaneous comments on hatch pattern coding:

Tip 1: Each line of code applies to a single pattern segment; the two lines of data (above)
represent a hatch pattern with two lines.

Tip 2: Hatch pattern lines are drawn infinitely long. What this means is that progeCAD
draws the line as long as necessary, as long as it reaches a boundary. progeCAD will not
draw the hatch pattern unless it does find a boundary.

Tip 3: At the very least, each line of pattern code must include the angle, x- and y-origin,
and the x- and y-offset. This draws a continuous line.

Tip 4: The dash1 parameter(s) is optional but when used draws a line with the dash-gap-
dot pattern.

Tip 5: There is no practical limit to the number of data lines for a hatch pattern definition.
Very complex patterns can take dozens and dozens of lines of code. But be careful: a complex
hatch pattern takes a long time to draw on slower computers. For this reason, place hatch
patterns on their own layer in a drawing, then freeze that layer. Thaw the layer when you
need to see the pattern or plot the drawing.

Tip 6: To change the angle of a hatch pattern upon placing it in the drawing, you’ve got a
couple of options:

• Specify the angle during the Hatch and BHatch commands.

• Set the angle in system variable SnapAng. The effect of SnapAng on the hatch
pattern angle is additive: if the hatch pattern defines the lines drawn at 45 degrees
and SnapAng is 20 degrees, then progeCAD draws the hatch lines at 65 degrees.
For example:

: snapangsnapangsnapangsnapangsnapang
New current angle for SNAPANG <0>: 2020202020

Tip 7: The x-offset and y-offset parameters are unaffected by the angle parameter, be-
cause x-offset is always in the direction of the line and y-offset is always perpendicular (90
degrees) to the line.

Tip 8: For whatever reason, progeCAD does not make it easy to change the origin of the
hatch pattern, which is important for accurate placement of the patterns or lining the pat-
tern up with another pattern. To change the x,y-origin of a hatch pattern upon placing it in
the drawing, use system variable SnapBase. The effect of SnapBase on the hatch pattern
origin is additive: if the hatch pattern specifies that the lines start at 0.1,0.11 and SnapBase
is 5,5, then progeCAD starts the hatch at 5.1,5.1.

○ ○

PB tailoring tailoring tailoring tailoring tailoring progeCADprogeCADprogeCADprogeCADprogeCAD

Tip 9: If you are uncomfortable using system variables, then the Snap command provides
the same opportunity via the Rotate option:

: snapsnapsnapsnapsnap
Snap is off (x and y = 0.5000): ON/Rotate/Style/Aspect/<Snap spacing>: rrrrr
Base point for snap grid <0.0000,0.0000>: 1,11,11,11,11,1
Rotation angle <0>: 4545454545

Tip 10: You cannot specify a weight (or linewidth) for a hatch pattern line. The workaround
is to define two or more very closely spaced lines, such as:

*Thick_Line, Closely spaced lines
0, 0,0, 0,.25 0, 0,.01, 0,.25 0, 0,.02, 0,.25

Tip 11: You cannot specify arcs, circles, and other round elements in a hatch pattern file.
Everything consists of straight lines and dots. To simulate circular elements, use a series of
very short dashes.

Tip 12: To draw dash and gap segments at an angle, use the sine of the angle in degrees,
like this:

Angle Dash length (sine)

0 0
30 0.433
45 0.707
60 0.866
90 1.0

Tip 13: It’s a lot easier for someone else (or you, six months from now) to read your hatch
pattern code if you use tabs and spaces to format the code into nice columns.

chapter 6 making hatch patternsmaking hatch patternsmaking hatch patternsmaking hatch patternsmaking hatch patterns 105

○ ○

Adding Custom Patterns to the Palette

Finally, let’s see how to add samples of your custom-made hatch pattern(s) to the BHatch
command’s dialog box. You cannot, unfortunately, expect your new pattern definitions to
appear automatically.

Let’s take a look at the problem: I added a dummy test hatch pattern (called “Dummy”) to
one of the .pat files. When I started the BHatch command, the name “Dummy” appears,
but the sample preview is blank. See figure below. The problem: how do we make the pattern
appear in the preview area.

There are two parts to solving the problem: (1) create a sample of the hatch pattern; and (2)
save the sample as a slide file in the C:\Users\login\AppData\Roaming\progeSOFT
\progeCAD 2009\R9\PRENG\patterns\ folder. (Replace “login” with the login name you
use to access the computer.)

Creating a Sample Hatch Pattern

Here are the steps I took to create a sample of the hatch pattern:

1. Start progeCAD.

2. The Boundary Hatch dialog box uses an icon image with an aspect ratio of
1.64:1. Set up a paper space viewport, because that restricts the MSlide command
to taking a “snapshot” of the viewport, not the entire drawing screen. I typed the
following commands to set up the screen:

Command: tilemode 0tilemode 0tilemode 0tilemode 0tilemode 0
Command: mview 0,0 1.64,1mview 0,0 1.64,1mview 0,0 1.64,1mview 0,0 1.64,1mview 0,0 1.64,1
Command: zoom ezoom ezoom ezoom ezoom e
Command: rectang 0,0 1.64,1rectang 0,0 1.64,1rectang 0,0 1.64,1rectang 0,0 1.64,1rectang 0,0 1.64,1

The Tilemode 0 command turns off tilemode (to allow paper space viewports).

The MView 0,0 1.64,1 command creates a viewport with the 1.64:1 aspect ratio.

○ ○

PB tailoring tailoring tailoring tailoring tailoring progeCADprogeCADprogeCADprogeCADprogeCAD

The Zoom E command makes the viewport fill the drawing screen to maximum size.

And the Rectang 0,0 1.64,1 command draws a boundary for the hatch pattern.

3. I can now use the BHatch (or Hatch) command to hatch the rectangle.
Command: bhatchbhatchbhatchbhatchbhatch

If at all possible, I use a scale of 1.0; this lets me see the hatch pattern’s size relative
to other hatch patterns. I only use a larger or smaller scale if I cannot see a repre-
sentative sample of the pattern.

Creating the Slide

The second step is to convert the hatch sample into a .sld file.

1. Before making the slide, I switched back to model space:
Command: mspacemspacemspacemspacemspace

2. Then, I created the slide file:
Command: mslidemslidemslidemslidemslide

This command displays the Create Snapshot dialog box. Change the folder to
C:\Users\login\AppData\Roaming\progeSOFT \progeCAD
2009\R9\PRENG\patterns\. Type the same name as the hatch pattern, such as
dummy.sld. Then click the Save button.

chapter 6 making hatch patternsmaking hatch patternsmaking hatch patternsmaking hatch patternsmaking hatch patterns 107

○ ○

3. (Optional) When I have more than one hatch pattern of which to make slides, I
switch back to paper space before employing the Erase command to remove the
old hatch pattern:

Command: pspacepspacepspacepspacepspace
Command: eraseeraseeraseeraseerase

After erasing the pattern, I applied a new pattern with BHatch. Again, I switched
back to model space, and retook the slide:

Command: bhatchbhatchbhatchbhatchbhatch
Command: mspacemspacemspacemspacemspace
Command: mslidemslidemslidemslidemslide

4. As always when customizing progeCAD, it is import to test my work, to make sure
the slide appears. I start BHatch, and then select the Pattern tab. When I select
the name of the custom hatch pattern, the slide image appears!

TIP If the pattern fails to appear, I have found it helps to exit progeCAD, restart it,
and then check again with BHatch. This forces progeCAD to reload the .sld files that
hold the pattern images.

○ ○

108 tailoring progeCAD 2009

progeCAD uses .shp and .shx files for fonts, complex linetypes, and GDT symbols. You
can create your own .shp files, which is the subject of this chapter. progeCAD lacks, however,
the Compile command, and cannot compile .shp files. It does support shape files as simple
blocks, and hence includes the Load and Shape commands.

progeCAD can display fonts in TrueType (.ttf) and AutoCAD formats (.shx). If a drawing dis-
plays fonts incorrectly, the problem lies with progeCAD not finding the location of the font
files. Use the Tools | Options | Paths command to add paths to the Fonts item.

12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567

In This Chapter

• Shapes with fonts, complex linetypes, and GDT symbols.
• About shape files. • Using shapes in drawings.
• Font compatibility with AutoCAD. • Understanding the shape file format.

C • H • A • P • T • E • R 7

Creating Shapes
& Fonts

chapter 7 creating shapes & fonts 109

○ ○

Fonts, Complex Linetypes, and GDT Symbols

progeCAD uses shapes in three areas: for fonts, complex linetypes, and GDT symbols.

Fonts

Fonts were originally coded as highly-efficient shapes in the early days of CAD, because text
was one of the slowest parts of the drawing display. Shown below are the worst and best of
.shp-based fonts:

By being constructed of mostly straight line, the text displayed faster on slow computers.

The drawback to shapes, however, is that they are not well-suited to defining the complex
curves that truly represent fonts, nor can they be filled. For this reason, progeCAD also sup-
ports .ttf TrueType fonts, which are commonly provided with the Windows operating system.

Font definition files are found in the \progeCAD\fonts folder. Fonts are loaded with the Style
command, and then placed with the Text and MText commands. The Text Style dialog box is
previews TrueType fonts, but not .shx fonts.

Complex Linetypes

Complex linetypes use shapes to produce the squiggles and text. Linetypes are defined by the
icad.lin and icadiso.lin files, found in the \progeCAD folder. Complex linetypes are loaded and
placed with the Linetype command. See Chapter 5 for details.

GDT Symbols

GDT symbols (geometric dimensioning and tolerancing) is the other area where shapes are
still used.

They are defined by shapes in the ic-gdt.shx file, found in the \progeCAD\fonts folder. The
symbols are placed with the Tolerance command.

○ ○

110 tailoring progeCAD 2009

About Shape Files

There are two kinds of shape files, .shp and .shx. The differences between them are as follows:

• .shp are shape source files. When you write or edit a shape or font, you work with the .shp
file. A portion of a typical .shp file looks like this:

*130,6,TRACK1
014,002,01C,001,01C,0

progeCAD has some .shp source files in the \progeCAD\fonts folder.

• .shx are compiled shape files. progeCAD is incapable of compiling .shp files into
.shx format. You must use AutoCAD to compile the shape files you create
using the information in this chapter. Normally, you cannot edit .shx files, unless
you have access to a shape decompiler program written by third parties. (A search in
Google for “shx decompilers” comes up with several products.)

Font Compatibility with AutoCAD

progeCAD uses the icad.fmp file to substitute its own .shx fonts for those found in AutoCAD
drawings; .fmp is short for “font map.”

AutoCAD Font progeCAD Equivalent

Bigfont ic-txt.shx

Complex ic-comp.shx

GDT ic-gdt.shx

GothicE ic-gothe.shx
GothicG ic-gothg.shx
GothicI ic-gothi.shx

GreekC ic-grekc.shx
GreekS ic-greks.shx

Italic ic-ital.shx
ItalicC ic-italc.shx
ItalicT ic-italt.shx

MonoTxt ic-mono.shx

RomanC ic-romnc.shx
RomanD ic-romnd.shx
romanS ic-romns.shx
RomanT ic-romnt.shx

AutoCAD Font progeCAD Equivalent

ScriptC ic-scrpc.shx
ScriptS ic-scrps.shx

Simplex ic-simp.shx

SyAstro ic-txt.shx
SyMap ic-txt.shx
SyMath ic-txt.shx
SyMeteo ic-txt.shx
SyMusic ic-txt.shx

Txt ic-txt.shx

IsocP.shx ic-isop1.shx
IsocP2.shx ic-isop2.shx
IsocP3.shx ic-isop3.shx
IsocT.shx ic-isot1.shx
IsocT2.shx ic-isot2.shx
IsocT3.shx ic-isot3.shx

chapter 7 creating shapes & fonts 111

○ ○

Using Shapes in Drawings

progeCAD has the ability to place shapes in drawings. To do this takes two steps: (1) load the
shape file into the drawing with the Load command; and (2) place the shape with the Shape
command. The problem is that progeCAD doesn’t include any useful shape files. When you use
the Load command, it opens to progeCAD’s \fonts folder; but font .shx files are not shape .shx
fonts. When you select a font .shx file, progeCAD complains, “File is not shape file.”

If you have an older version of AutoCAD around, it included some sample .shx files. Even if you
have a recent release, go on over to AutoCAD’s \support folder and load the ltypeshp.shx file.
It’ll work. (Interestingly enough, the gdt.shx file is considered font file.)

1. Load the shape file into progeCAD, as follows:

: load

2. In the Load Shape File dialog box, use the Look in listbox to navigate to AutoCAD’s
\support folder.

Select the ltypeshp.shx file, and then click Open. progeCAD reports, “File ltypeshp.shx
loaded.”

3. Placing a shape in the drawing is similar to placing a block:

: shape
? to list/Shape to insert: ?

The ? option lists the names of shapes stored in the file:

 ltypeshp.shx :
 TRACK1 ZIG BOX CIRC1 BAT

Repeat the Shape command, and this time we’ll insert a shape for real:

: shape
? to list/Shape to insert: bat
Insertion point for shape: (Pick a point.)
Scale factor for shape <1.0>: (Press ENTER.)
Rotation angle for shape <0>: (Press ENTER.)

In case you were wondering, the “bat” shape is used for the insulation linetype.

○ ○

112 tailoring progeCAD 2009

The Shape File Format

Autodesk defined two formats for shape files: one for shapes (simple blocks) and the other for
fonts. The difference is that fonts include a code 0 so that the file is treated as a font defini-
tion, not a shape definition. progeCAD has the ability to load shapes and supported fonts.

A shape file typically defines one or more shapes, up to 258 shapes in total. A font file typically
defines all the characters — such as A-Z, a-z, 0-9, and punctuation — for a single font. Unicode
font files can have up to 32,768 definitions.

Like some other customization files, a shape definition consists of two or more lines. The first
line is the header, which labels the shape, while the second (and following) lines define the
shape through codes. The final code in each definition is 0, which is called the terminator.

Each line can be up to 128 characters in length; AutoCAD will not compile a shape file with
longer lines. A single definition is limited to 2,000 bytes.

You can use blank lines to separate shape definitions, and the semicolon (;) to include com-
ments in the file.

The general format of a shape definition a header lines, followed by one or more definition
lines:

*shapeNumber,totalBytes,shapeName
byte1,byte2,byte3,...,0

Header Fields

The following describes the fields of the shape’s header description:

Definition Start - *

*130,6,TRACK1

The asterisk signals AutoCAD that the next shape definition is starting.

shapeNumber

*130,6,TRACK1

Each shape requires a unique number by which it is identified. For fonts, the number is the
equivalent ASCII code, such as 65 for the letter A.

TIP The shapeNumbers 256, 257, and 258 are reserved for the degree, plus-or-minus,
and diameter symbols.

totalBytes

*130,6,TRACK1

After defining the shape, you have to add up the number of bytes that describe the shape,
including the terminator, 0. Makes no sense to me.

There is a limit of 2,000 bytes per shape definition. Unicode shape numbers count as two
bytes each.

chapter 7 creating shapes & fonts 113

○ ○

shapeName

*130,6,TRACK1

Shape names must be in all uppercase. Because names with lowercase characters are ignored,
you can use them for in-line comments.

Definition Lines

The header line is followed by one or more lines that define the shape or font. This is the nitty-
gritty part of shape files, and you will now see why they are rarely used anymore.

bytes

014,002,01C,001,01C,0

The shape is defined by “bytes,” called that because each code is a single byte (the computer
measurement) in size. Bytes define vector lengths and directions, or instruction codes. They
can be in decimal (base 10) or hexadecimal (base 16) format.

Definition lines are a maximum of 128 characters long (including commas), and a maximum
of 2,000 bytes overall (not including commas). The last definition line ends with a 0.

TIP When the first character of a byte is a 0, the two characters following are in
hexadecimal, such as 00C (12, in decimal).

Vector Codes

Vector codes describe how the shape is drawn. They define movement (pen up) and drawing
(pen down). Vector codes are limited to 16 directions, as shown by the figure:

Notice that the lengths are not radial: the diagonal vectors (such as 2 and E) are 1.414 (square
root of 2) times longer than the orthogonal vectors (such as 4 and 0). Vector codes are always
in hexadecimal notation, such as 02C:

○ ○

114 tailoring progeCAD 2009

• First character is always 0 to indicate that the number is in hexadecimal.

• Second character is the vector length, ranging from 1 through F (15 units).

• Third character is the direction, as noted by the figure above.

Thus, 02C would draw a line 2 units long in the -y direction (downward). By now, you can see
that you need to understand hexadecimal notation.

Instruction Codes

In addition to describing direction and length, shapes use codes to provide instructions. Code
numbers can be in decimal (dec) or hexadecimal (hex). Hex codes always have three digits, the
first being a 0 (zero).

Notice that some codes rely on additional codes following. And, note that drawing is limited to
lines, arcs, and spaces.

Hex Dec Description

000 0 End of shape definition.

Basic Draw and Move:
001 1 Begin draw mode (pen down).
002 2 End draw mode (pen up).

Scaling:
003 3 Divide vector lengths by next byte.
004 4 Multiply vector lengths by next byte.

Memory:
005 5 Push current location onto stack.
006 6 Pop current location from stack.

Draw Subshape:
007 7 Draw subshape number given by next byte.

Advanced Draw and Move:
008 8 X,y displacement given by next two bytes.
009 9 Multiple x,y displacements; terminated with (0,0) code.

Arcs:
00A 10 Octant arc defined by next two bytes.
00B 11 Fractional arc defined by next five bytes.
00C 12 Arc defined by x,y displacement and bulge.
00D 13 Multiple bulge-specified arcs.

Fonts:
00E 14 Process next command only if vertical text code exists.

A stack is a specific type of memory called FILO, short for “first in, last out.” When two num-
bers are stored in the stack memory, the last number stored is the first one out. Think of an
elevator, where the first person in is usually the last one out.

chapter 7 creating shapes & fonts 115

○ ○

End of Shape - 0/000

Code 0 must mark the end of every shape definition. It appears at the end of the last line.

00C,(2,0,-127),0

In hex notation, 0 appears as 000.

Draw Mode - 1/001

Code 1 starts drawing mode (“pen” is down). By default, every shape definition starts with
draw mode turned on.

2/002: Move Mode -

Code 2 starts move mode (“pen” is up). In the sample below, the pen is raised before moving to
a new location.

2,8,(-36,-63),1,0

Reduced Scale - 3/003

Code 3 specifies the relative size of each vector. Each shape starts off at the height of one of the
orthogonal vectors, such as 4. To make the shape smaller, use code 3 followed by a byte specifying
the scale factor, 1 through 255. For example, the following code draws the shape half as large:

3,2

TIP Within a shape definition, the scale factor is cumulative. Using the same scale code
twice multiplies the effect. For example, 3,2 followed by another 3,2 makes part of the
shape four times smaller.

At the end of the shape definition, return the scale to unity so that other shapes are not
affected.

Enlarged Scale - 4/004

To make the shape larger, use code 4 followed by a byte specifying the scale factor, 1 through
255. For example, the following code draws the shape twice as large:

4,2

Note that you can use the 3 and 4 codes within a shape definition to make parts of the shape
larger and smaller.

Save (Push) - 5/005

Code 5 saves (pushes) the current x,y-coordinates to the stack memory. You then use code 6 to
recall (pop) the coordinates for later use. The stack memory is limited to four coordinates. By
the end of the shape definition, you must recall all coordinates that you saved; i.e., there must
be an equal number of code 5s and 6s, as shown below:

2,14,8,(-8,-25),14,5,8,(6,24),1,01A,016,012,01E,02C,02B,01A,2,
8,(8,5),1,01A,016,012,01E,02C,02B,01A,2,8,(4,-19),14,6,
14,8,(8,-9),0

○ ○

116 tailoring progeCAD 2009

Recall (Pop) - 6/006

Code 6 recalls (pops) the most-recently saved coordinates from the stack memory.

Subshape - 7/007

Code 7 calls a subshape, which is simply another shape. Shapes can be used within other shapes,
which helps reduce the tedium of coding shapes. Code 7 is followed by reference to another
shape number, between 1 to 255. (Recall that all shapes within a .shp file are identified by
number.) For example:

7,2

calls shape 2 as a subshape.

X,y Distance - 8/008

Codes 8 and 9 overcome the restriction that the vector codes (just 16 directions) place on
drawing. Code 8 defines a distance using two bytes that range from -128 to 127:

8,xDistance,yDistance

The example below shows code 8 being used often:

2,14,3,2,14,8,(-21,-50),14,4,2,14,5,8,(11,25),1,8,(-7,-32),2,
8,(13,32),1,8,(-7,-32),2,8,(-6,19),1,0E0,2,8,(-15,-6),1,0E0,2,
8,(4,-6),14,6,14,3,2,14,8,(21,-32),14,4,2,0

In the first line of code above, 8,(-21,-50) draws 21 units down (-x), and 50 units left (-y).

X,y Distances - 9/009

Whereas code 8 specifies a single coordinate, code 9 specifies a series of coordinates, termi-
nated by (0,0). For example:

9,(1,2),(-3,4),(5,-6),(0,0)

Octant Arc - 10/00A

Code 10 defines an octant arc, which is an arc whose angle is limited to multiples of 45 degrees, as
shown in the following figure. The arc always starts at position 0, and move counterclockwise.

chapter 7 creating shapes & fonts 117

○ ○

 The arc is specified by the following bytes:

10,radius,- 0 startingOctant octantSpan

• 10 specifies an octant arc.

• radius is a value between 1 and 255.

• Negative sign changes the direction of the arc to clockwise; leave it out for counterclock-
wise direction.

• 0 specifies the following characters are hexadecimal.

• startingOctant specifies where the arc starts; the value ranges between 0 and 7).

• octantSpan specifies how hard the arc travels, again a number between 0 through 7.

TIPS When octantSpan is 0, the shape draws a circle.

The octant arc code usually uses parentheses to make itself clearer, such as:
10,(25,-040)

Fractional Arc - 11/ 00B

Code 11 is more useful because it draws arcs that don’t end and start at octant angles. Its
specification requires, however, five bytes:

11,startOffset,endOffset,highRadius,radius,- 0 startingOctant octantSpan

• 11 defines the fractional arc.

• startOffset specifies how far (in degrees) from the octant angle the arc begins.

• endOffset specifies how far from an octant angle the arc ends.

• highRadius specifies a radius larger than 255 units; when the arc has a radius of 255 units
or smaller, then this parameter is 0. The highRadius is multiplied by 256, then added to
the radius value to find the radius of the arc.

• radius is a value between 1 and 255.

• Negative sign changes the direction of the arc to clockwise; leave it out for counterclock-
wise direction.

• 0 specifies the following characters are hexadecimal.

• startingOctant specifies where the arc starts; the value ranges between 0 and 7.

• octantSpan specifies how hard the arc travels, again a number between 0 through 7.

TIP Here is how Autodesk suggests determining the value of startOffset and endOffset:
1. Determine the offsets by calculating the difference in degrees between the

starting octant's boundary (which is always a multiple of 45 degrees) and the start of the
arc.

2. Multiply the difference by 256.
3. Divide the result by 45.

○ ○

118 tailoring progeCAD 2009

Bulge Arc - 12/00C

Code 12 draws a single-segment arc by applying a bulge factor to the displacement vector.

0C,xDisplacement,yDisplacement,bulge

• xDisplacement and yDisplacement specify the starting x,y-coordinates of the arc.

• bulge specifies the curvature of the arc. All three values range from -127 to 127.

This is how Autodesk says the bulge is calculated: “If the line segment specified by the dis-
placement has length D, and the perpendicular distance from the midpoint of that segment
has height H, the magnitude of the bulge is ((2 * H / D) * 127).”

A semicircle (180 degrees) would have a bulge value of 127 (drawn counterclockwise) or -127
(drawn clockwise), while line would have a value of 0. For an arc of greater than 180 degrees,
use two arcs in a row.

Polyarc - 13/00D

Code 13 draws a polyarc, an arc with two or more parts. It is terminated by (0,0).

13,(0,2,127),(0,2,-127),(0,0)

TIP To draw a straight line between two arcs, it is more efficient to use a zero-bulge
arc, than to switch between arcs and lines.

Flag Vertical Text Flag - 14/00E

Code 14 is for fonts only, and only fonts that are designed to be placed horizontally and verti-
cally. When the orientation is vertical, the code following is processed; if horizontal, the code
is skipped.

chapter 7 creating shapes & fonts 119

○ ○

Notes

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

○ ○

120 tailoring progeCAD

in this chapter, we look at progeCAD’s clearest customization possibility: the script. You also
learn about progeCAD’s script recording feature.

What are Scripts?

Scripts mimic what you type at the keyboard and click with the mouse in the drawing area.
Anything you type in progeCAD that shows up at the ‘:’ command prompt can be put in a script
file. That includes progeCAD commands, their option abbreviations, your responses, and —
significantly — LISP code. Other mouse actions, including selecting dialog box and toolbar
buttons, cannot be included in a script file.

12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567

In This Chapter

• What are scripts? • Special characters.
• Drawbacks to scripts. • Recording scripts.
• Script commands and modifiers.

C • H • A • P • T • E • R 8

Using Script Files

chapter 8 using script filesusing script filesusing script filesusing script filesusing script files 121

○ ○

The purpose of the script is to reduce keystrokes by placing the keystrokes and screen coordi-
nates in files. It was a predecessor to macros. For instance, a script file that draws a line and a
circle looks like this:

line 1,1 2,2
circle 2,2 1,1

Script files have an extension of .scr. Script files are stored in plain ASCII. For that reason, I
don’t use a word processor, such as WordPad, OpenOffice, or Atlantis. Instead, I use Notepad
to write scripts. Sometimes, when I feel like a DOS power user, I even write scripts at the DOS
prompt:

C:\> copy con filename.scrcopy con filename.scrcopy con filename.scrcopy con filename.scrcopy con filename.scr
;This is the script file;This is the script file;This is the script file;This is the script file;This is the script file
line 1,1 2,2line 1,1 2,2line 1,1 2,2line 1,1 2,2line 1,1 2,2
circle 2,2 1,1circle 2,2 1,1circle 2,2 1,1circle 2,2 1,1circle 2,2 1,1

When I’m done, I press F6 or CTRL+Z to tell DOS that I’ve finish editing, and to close the file.

Drawbacks to Scripts

A limitation to scripts is that only one script file can be loaded into progeCAD at a time. A
script file can, however, call another script file. Or, you can use some other customization facil-
ity to load script files with a single mouse click, such as toolboxes, menu macros, and LISP
routines.

Another limitation is that scripts stall when they encounter invalid command syntax. I some-
times have to go through the code-debug cycle a few times to get the script correct. It is useful
to have an CAD reference text on hand that lists all command names and their options.

progeCAD includes a script creation command, RecScript (short for “record script”).

Strictly Command-Line Oriented

There are two more limitations that are significant in this age of GUIs (graphical user inter-
faces): scripts cannot control mouse movements nor dialog boxes. For these reasons, nearly all
commands that display a dialog box have a command line equivalent in progeCAD:

• Some commands have different names. For example, to control layers, there are the
Layer (dialog box) and -Layer (command-line) commands. If the script needs to
create or change a layer, use the -Layer command — or better yet — the CLayer
system variable, as follows:

; Change layer:; Change layer:; Change layer:; Change layer:; Change layer:
clayer layernameclayer layernameclayer layernameclayer layernameclayer layername

• Some commands need system variable FileDia turned off. This forces commands
that display the Open File and Save File dialog boxes — such as Open, Script,
and VSlide — to prompt for file names at the command line. Thus, script files should
include the following lines to turn off file dialog boxes:

; Turn off dialog boxes:; Turn off dialog boxes:; Turn off dialog boxes:; Turn off dialog boxes:; Turn off dialog boxes:
filedia 0filedia 0filedia 0filedia 0filedia 0
; Load slide file:
vslide filename

○ ○

122 tailoring progeCAD

• When FileDia is turned off, use the ~ (tilde) as a filename prefix to force the display
of the dialog box. For example:

: scriptscriptscriptscriptscript
Script to run: ~~~~~ (progeCAD displays Run Script dialog box.)

Script Commands and Modifiers

There are a grand total of four commands that relate specifically to scripts. In fact, these com-
mands are of absolutely no use for any other purpose. In rough order of importance, these are:

Script

The Script command performs double-duty: (1) it loads a script file; and (2) immediately
begins running it. Use it like this:

: scriptscriptscriptscriptscript
Script to run: filenamefilenamefilenamefilenamefilename

Remember to turn off (set to 0) the FileDia system variable, so that the prompts appear at the
command line, instead of the dialog box.

RScript

Short for “repeat script,” this command reruns whatever script is currently loaded in progeCAD.
A great way to create infinite loops. There are no options:

: rscriptrscriptrscriptrscriptrscript

Resume

This command resumes a paused script file. Pause a script file by pressing the Backspace key.
Again, no options:

: resumeresumeresumeresumeresume

Delay

To create a pause in a script file without human intervention, use the Delay command along
with a number. The number specifies the pause in milliseconds, where 1,000 milliseconds
equal one second. The minimum delay is 1 millisecond; the maximum is 32767 milliseconds,
which is just under 33 seconds.

While you could use Delay at the ‘:’ prompt, that makes little sense; instead, Delay is used in
a script file to wait while a slide file is displayed or to slow down the script file enough for
humans to watch the process, like this:

; Pause script for ten seconds:; Pause script for ten seconds:; Pause script for ten seconds:; Pause script for ten seconds:; Pause script for ten seconds:
delay 10000delay 10000delay 10000delay 10000delay 10000

chapter 8 using script filesusing script filesusing script filesusing script filesusing script files 123

○ ○

Special Characters

In addition to these four script-specific commands, there are some special characters and keys.

Enter - (space)

The most important special characters are invisible: both the space and the carriage return (or
end-of-line) represent you pressing the SPACEBAR and ENTER key. In fact, both are interchange-
able. But the tricky part is that they are invisible.

Sometime, I’ll write a script that requires a bunch of blank space because the command re-
quires that I press the ENTER key several times in a row. AttEdit is an excellent example:

; Edit the attributes one at a time: ; Edit the attributes one at a time: ; Edit the attributes one at a time: ; Edit the attributes one at a time: ; Edit the attributes one at a time:
attedit 1,2attedit 1,2attedit 1,2attedit 1,2attedit 1,2

How many spaces are there between attedit and the coordinates 1,2? I’ll wait while you count
them...

For this reason, it is better to place one script item per line, like this:

; Edit the attributes one at a time:; Edit the attributes one at a time:; Edit the attributes one at a time:; Edit the attributes one at a time:; Edit the attributes one at a time:
atteditatteditatteditatteditattedit

1,21,21,21,21,2

Now it’s easier to count those four spaces, since there is one per blank line.

Comment - ;

You probably have already noticed that the semicolon lets you insert comments in a script file.
progeCAD ignores anything following the semicolon.

Transparent - '

Scripts can be run transparently during a command. Simply prefix the Script command to
run a script while another command is active, like this:

: linelinelinelineline
Start of line: 'script'script'script'script'script
Script to run: filenamefilenamefilenamefilenamefilename

All four of progeCAD’s script-specific commands are transparent, even 'Delay. That lets you
create a delay during the operation of a command — as if I needed an excuse to run progeCAD
slowly!

Pause - Backspace

...is the key I mentioned earlier for pausing a script file.

Stop - ESC

...stops a script file dead in its tracks; use the RScript command to start it up again from the
beginning

○ ○

124 tailoring progeCAD

Recording Scripts

progeCAD has the ability to record scripts. That can make it easy to write scripts, although you
may need to edit out typing errors. The RecScript command records all your keystrokes and
mouse picks in the drawing area (i.e., x,y-coordinate picks.)

The script recorder does not, however, record your use of the mouse with menus, toolbars, and
dialog boxes. progeCAD’s documentation warns, “Using these while recording a script causes
unpredictable results.” So, command-line activity only!

With that in mind, here are the steps to recording a script:

1. Turn off dialog boxes, as follows:
: filediafilediafilediafilediafiledia
New current value for FILEDIA (Off or On) <On>: offoffoffoffoff

2. From the menu bar, select Tools | Record Script. progeCAD prompts you to provide a
name for the script:

: RECSCRIPT RECSCRIPT RECSCRIPT RECSCRIPT RECSCRIPT
Script to record: (Enter a filename.)

Remember to include the .scr extension, otherwise progeCAD leaves it out. For
example, enter tailoring.scr. The name you provide becomes the filename for the
saved .scr file.

3. progeCAD asks if you want to append the script to an existing .scr file — curious that
it asks, even if this is a new filename you are proposing:

Append to script? <N>: (Press ENTER.)

4. Enter commands and options. When you pick points in the drawing with the mouse,
progeCAD records the pick points as coordinates, like the following:

Script Command Comments

c 5.0276,6.2169 Enter Circle command, pick center point...
7.1124,4.1321 ...and pick radius point.
l 1.2435,6.7950 Enter Line command, pick first point...
8.4613,6.7074 ...pick second point...
2.8202,2.2576 ... and pick third point.

5. When done, go to the Tools menu bar, and then select Stop Recording.

6. Turn on FileDia to make dialog boxes visible again.

7. To run the recorded script file, use the Script command.

chapter 9 programming lispprogramming lispprogramming lispprogramming lispprogramming lisp 125

○ ○

while toolbar and menu macros are easy to write and edit, they limit your ability to
control progeCAD. In this chapter, we look at the most powerful method available to “non-
programmers” for customizing progeCAD — the LISP programming language — at the cost of
being somewhat more difficult to create than macros or scripts.

While LISP is meant for writing programs, it can be used like macros. This chapter shows you
both approaches.

12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567

In This Chapter

• The history of LISP in IntelliCAD. • External command functions.
• Compatibility between LISP and AutoLISP. • Accessing system variables.
• The LISP programming language. • Advanced LISP functions.
• Simple LISP: adding two numbers. • Writing a simple LISP program.
• LISP in commands. • Saving data to files.
• LISP function overview. • Tips in using LISP.

C • H • A • P • T • E • R 9

Programming LISP

○ ○

126 tailoring progeCAD

The History of LISP in CAD

LISP is one of the earliest programming languages, developed in the late 1950s to assist artifi-
cial intelligence research. Its name is short for “list processing,” and it was designed to handle
lists of words, numbers, and symbols.

LISP first appeared in CAD when, back in 1985, Autodesk added an undocumented feature to
AutoCAD v2.15 called “Variables and Expressions.” Programmers at Autodesk had taken XLISP,
a public domain dialect written by David Betz, and adapted it for AutoCAD. The initial release
of Variables and Expressions was weak, because it lacked conditional statements — needed by
programming languages to make decisions.

With the release AutoCAD v2.5, however, Autodesk got serious. They added the missing pro-
gramming statements; they added the powerful GETxxx, SSxxx, and EntMod routines that
provide direct access to entities in the drawing database; and they renamed the programming
language “AutoLISP.” This allowed third-party developers to wrote routines that manipulated
the entire drawing, and non-programmers to write simple routines that automated everyday
drafting activities.

When SoftDesk developed IntelliCAD, they included a programming language very similar to
AutoLISP, calling it simply “LISP.” (I think it would have been better to call it IntelliLISP to
prevent confusion with the real LISP programming language. Better yet, they could have given
it the trendy moniker of iLISP.)

Since Autodesk’s original idea, other CAD packages also included dialects of LISP, including
CadKey, TurboCAD, and FelixCAD. Later, Autodesk added a compiled version of AutoLISP to
AutoCAD, called Visual LISP.

In addition to LISP, you can also write programs for progeCAD using SDS (solution develop-
ment system) and VBA (visual basic for applications).

Compatibility between LISP and AutoLISP

LISP in progeCAD is, for the most part, compatible with AutoCAD’s AutoLISP. If you know
AutoLISP, you can program immediately in LISP, including controlling dialog boxes. LISP
has, however, some differences you should be aware of.

Additional LISP Functions

LISP contains several additional functions not found in AutoLISP. These include the follow-
ing:

LISP Function Comment

log10 Returns log base 10 of the number.
lpad Pads the text string with spaces to the left.
rpad Pads the text string with spaces to the right.
tan Returns the tangent of the angle.
trim Trims spaces from the string.

chapter 9 programming lispprogramming lispprogramming lispprogramming lispprogramming lisp 127

○ ○

Different LISP Functions

LISP has several functions that operate differently from AutoLISP, by providing additional
support. These include the following:

LISP Function Comment

osnap Supports PLA (planview) entity snap for snapping to 2D intersections.
ssget and ssadd Supports additional selection modes:

CC - Crossing Circle
O - Outside
OC - Outside Circle
OP - Outside Polygon
PO -POint

Missing AutoLISP Functions

LISP lacks some functions found in AutoLISP These include: acdimenableupdate, acet-attsync,
acet-layerp-mode, acet-layerp-mark, acet-laytrans, acet-ms-to-ps, acet-ps-to-ms, defun-q,
defun-q-list-ref, defun-q-list-set, entmakex, initdia, namedobjdict, ssnamex, and tablet.

Also missing are:

• All ARX-related functions that run ObjectARX applications

• All dict-related functions.

• All vl-related functions for Visual LISP.

• All SQL-related functions, which link between objects in the AutoCAD drawing with
records in an external database file. In AutoCAD, these functions start with “ase_”, as
in ase_lsunite and ase_docmp.

The LISP Programming Language

LISP is capable of many masks, from adding together two numbers — during the middle of a
command — to drawing parametrically a staircase in 3D, to generating a new user interface for
progeCAD, to manipulating data in the drawing database.

The most important aspect of LISP, in my opinion, is that it lets you toss off a few lines of code
to help automate your work. In this chapter’s tutorials, I show you how to write simple LISP
code that makes your progeCAD drafting day easier.

In contrast, IntelliCAD’s most powerful programming facility — known as SDS (solutions de-
velopment system) — is merely an interface: you have to buy additional the programming tools
(read: $$$) and have an in-depth knowledge of advanced programming methodology. The
primary advantage to using SDS is speed: these programs run compute-intensive code as much
as 100 times faster than LISP.

Simple LISP: Adding Two Numbers

With that bit of background, let’s dive right into using LISP. Let’s start with something easy,
something everyone knows about, adding together two numbers, like 9 plus 7.

○ ○

128 tailoring progeCAD

1. Start progeCAD, any version.

2. When the ‘Command:’ command prompt appears, type the boldface text, shown
below, on the keyboard:

Command: (((((+++++ 9 7) 9 7) 9 7) 9 7) 9 7) (Press Enter.)
16
Command:

progeCAD instantly replies with the answer, 16. (In this chapter, I show the function we’re
talking about in cyan.)

Getting to this answer through (+ 9 7) may, however, seem convoluted to you. That’s because
LISP uses prefix notation:

The operatoroperatoroperatoroperatoroperator, +, appears before the operandsoperandsoperandsoperandsoperands, 9 and 7.

Think of it in terms of “add 9 and 7.” This is similar to how progeCAD itself works: type in the
command name first (such as Circle), and then enter the coordinates of the circle.

3. Notice the parentheses that surround the LISP statement. Every opening parenthesis,
(, requires a closing parenthesis,). I can tell you right now that balancing parentheses
is the most frustrating aspect to LISP. Here’s what happens when you leave out the
closing parentheses:

Command: (+ 9 7(+ 9 7(+ 9 7(+ 9 7(+ 9 7 (Press Enter.)
Missing: 1) >

progeCAD displays the “Missing: 1)” prompt to tell you that one closing parenthesis is
missing. If two closing parentheses were missing, the prompt would read “Missing: 2)”.

4. Type the missing) and progeCAD is satisfied:
Missing: 1) >))))) (Press ENTER.)
16
Command:

5. The parentheses serve a second purpose: they alert progeCAD that you are using LISP.
If you were to enter the same LISP function ‘+ 7 9’ without parentheses, progeCAD
would react unfavorably to each character typed, interpreting each space as the end
of a command name:

Command: +++++ (Press the spacebar.)
Unable to recognize command. Please try again.
Command: 99999 (Press the spacebar.)
Unable to recognize command. Please try again.
Command: 77777 (Press the spacebar.)
Unable to recognize command. Please try again.
Command:

6. As you might suspect, LISP provides all the basic arithmetic functions: addition,
subtraction, multiplication, and division. Try each of the functions, subtraction first:

Command: (((((----- 9 7) 9 7) 9 7) 9 7) 9 7)
2
Command:

7. Multiplication is done using the familiar * (asterisk) symbol, as follows:
Command: (((((***** 9 7) 9 7) 9 7) 9 7) 9 7)
63
Command:

chapter 9 programming lispprogramming lispprogramming lispprogramming lispprogramming lisp 129

○ ○

8. Finally, division is performed with the / (slash) symbol:
Command: (((((///// 9 7) 9 7) 9 7) 9 7) 9 7)
1
Command:

Oops, that’s not correct! Dividing 9 by 7 is 1.28571, not 1. What happened? Up until now, you
have been working with integer numbers (also known as whole numbers). For that reason,
LISP has been returning the results as integer numbers, although this was not apparent until
you performed the division.

To work with real numbers, add a decimal suffix, which can be as simple as .0 — this
converts integers to real numbers, and forces LISP to perform real-number division,
as follows:

Command: (/ 9.0 7)(/ 9.0 7)(/ 9.0 7)(/ 9.0 7)(/ 9.0 7)
1.28571
Command:

And LISP returns the answer correct to five decimal places.

9. Finally, let’s see how LISP lets you nest calculations. “Nest” means to perform more
than one calculation at a time.

Command: (+ (- (* (/ 9.0 7.0) 4) 3) 2)(+ (- (* (/ 9.0 7.0) 4) 3) 2)(+ (- (* (/ 9.0 7.0) 4) 3) 2)(+ (- (* (/ 9.0 7.0) 4) 3) 2)(+ (- (* (/ 9.0 7.0) 4) 3) 2)
4.14286
Command:

Note how the parentheses aid in separating the nesting of the terms.

LISP in Commands

Okay, so we’ve learned how progeCAD works as a $695 four-function calculator. This over-
priced calculator pays its way when you employ LISP to perform calculations within commands.
For example, you may need to draw a linear array of seven circles to fit in a 9" space.

1. Start the Circle command, as follows:
Command: circlecirclecirclecirclecircle
2Point/3Point/RadTanTan/Arc/Multiple/<Center of circle>: (Pick a point.)

2. Instead of typing the value for the diameter, enter the LISP equation, as follows:
Diameter/<Radius>: (/ 9.0 7)(/ 9.0 7)(/ 9.0 7)(/ 9.0 7)(/ 9.0 7)
Diameter/<Radius>: 1.28571

progeCAD draws a circle with a diameter of 1.28571 inches. You can use an appropri-
ate LISP function anytime progeCAD expects user input.

3. Now go on to the -Array command, and draw the other six circles, as follows:

: -array-array-array-array-array
Select entities to array: LLLLL
Entities in set: 1 Select entities to array: (Press Enter.)
Type of array: Polar/<Rectangular>: rrrrr
Number of rows in the array <1>: (Press Enter.)
Number of columns <1>: 7
Horizontal distance between columns: (/ 0.9 7)(/ 0.9 7)(/ 0.9 7)(/ 0.9 7)(/ 0.9 7)
Horizontal distance between columns: 0.128571

○ ○

130 tailoring progeCAD

Once again, you use LISP to specify the array spacing, which happens to equal the
circle diameter.

Remembering the Result: setq

In the above example, you used the (/ 9.0 7) equation twice: once in the Circle command and
again in -Array. Just as the M-key on a calculator lets it remember the result of your calcula-
tion, LISP can be made to remember the results of all your calculations.

To do this, employ the most common LISP function, known as setq. This curiously named
function is short for SET eQual to.

1. To save the result of a calculation, use the setq function together with a variable, as
follows:

Command: (((((setq setq setq setq setq x (/ 9.0 7))x (/ 9.0 7))x (/ 9.0 7))x (/ 9.0 7))x (/ 9.0 7))
1.28571
Command:

Here, x remembers the result of the (/ 9.0 7.0) calculation. Notice the extra set of
parentheses.

From algebra class, you probably recall equations like 'x = 7 + 9' and 'x = 7 / 9'. The x
is known as a variable because it can have any value.

2. To prove to yourself that x contains the value of 1.28571, use IntelliCAD’s ! (exclama-
tion) prefix, as follows:

 Command: !!!!!xxxxx
 1.28571
 Command:

The ! prefix (sometimes called “the bang”) is useful for reminding yourself of the value con-
tained by a variable, in case you’ve forgotten, or are wondering what happened during the
calculation.

LISP isn’t limited to just one variable. You can make up any combination of characters to cre-
ate variable names, such as pt1, diameter, and yvalue. The only limitation is that you cannot
use LISP function names, such as setq, T, and getint. In fact, it is good to create variable
names that reflect the content, such as the circle diameter calculated above. But you also want
to balance a descriptive name, such as diameter, with minimized typing, such as x. A good
compromise for our example is dia.

3. You make one variable equal another, as follows:
Command: (setq (setq (setq (setq (setq diadiadiadiadia x) x) x) x) x)
1.28571
Command: !dia!dia!dia!dia!dia
1.28571
Command:

4. Redo the Circle and -Array commands, this time using variable dia, as follows:
Command: circlecirclecirclecirclecircle
2Point/3Point/RadTanTan/Arc/Multiple/<Center of circle>: (Pick a point.)
Diameter/<Radius>: !dia!dia!dia!dia!dia
Diameter/<Radius>: 1.28571
Command: -array-array-array-array-array

chapter 9 programming lispprogramming lispprogramming lispprogramming lispprogramming lisp 131

○ ○

Select entities to array: LLLLL
Entities in set: 1 Select entities to array: (Press Enter.)
Type of array: Polar/<Rectangular>: rrrrr
Number of rows in the array <1>: (Press Enter.)
Number of columns <1>: 7
Horizontal distance between columns: !dia !dia !dia !dia !dia
Horizontal distance between columns: 0.128571

progeCAD draws precisely the same seven circles, using the value 1.28571 stored in dia.

LISP Function Overview

LISP is so powerful that it can manipulate almost any aspect of the progeCAD drawing. In the
following tutorial, you get a taste of the many different kinds of functions LISP offers you for
manipulating numbers and words. As we start on our whirlwind tour of several groups of func-
tions, start progeCAD, and then type the examples in the Prompt History window by pressing
F2 at the ‘Command:’ command prompt.

Math Functions

In addition to the four basic arithmetic functions you already learned, LISP has many of the
mathematical functions you might expect in a programming language. The list includes trigo-
nometric, logarithmic, logical, and bit manipulation functions; one type of function missing is
matrix manipulation.

For example, the min function returns the smallest (minimum) of a list of numbers:

Command: (((((min min min min min 7 3 5 11)7 3 5 11)7 3 5 11)7 3 5 11)7 3 5 11)
3

To remember the result of this function, add setq with variable minnbr, as follows:

Command: (setq (setq (setq (setq (setq minnbr minnbr minnbr minnbr minnbr (min 7 3 5 11))(min 7 3 5 11))(min 7 3 5 11))(min 7 3 5 11))(min 7 3 5 11))
3

Now each time you want to refer to the minimum value of that series of numbers, you can refer
to variable minnbr. Here’s an example of a trig function, sine:

Command: (((((sin sin sin sin sin minnbr) minnbr) minnbr) minnbr) minnbr)
0.14112

Returns the sine of the angle of 3 radians.

TIPS You must provide the angle in radians, not degrees. This is many times an inconve-
nience, because often you work with degrees, but must convert them to radians.

Fortunately, LISP can do this for you, as long as you code it correctly. Recall that
there are 2*pi (approximately 6.282) radians in 360 degrees. For example, to get the sine of
45 degrees, you have to indulge in some fancy footwork:
 Command: (sin (* (/ 45 180.0) pi))
 0.707107
Here I divided the degrees (45) by 180, then multiplied by pi. Either the 45 or the 180 needs
a decimal (.0) to force division by real numbers, rather than by integers.

By the way, pi is the only constant predefined in LISP, and is equal to 3.1415926. That
means you just type pi, instead of 3.1415926 each time you need the value of pi in a
function. To see this for yourself, use the exclamation mark at the command prompt:
 Command: !pi
 3.14159
LISP displays the result to six decimal places, even though it performs calculations to 32-bit
accuracy.

○ ○

132 tailoring progeCAD

Geometric Functions

Since CAD deals with geometry, LISP has a number of functions for dealing with geometry.

Distance Between Two Points

The LISP distance function is similar to progeCAD’s Dist command: it returns the 3D dis-
tance between two points. To see how it works, first assign x,y-coordinates to a pair of points,
p1 and p2, as follows:

Command: (setq (setq (setq (setq (setq p1 p1 p1 p1 p1 '(1.3 5.7))'(1.3 5.7))'(1.3 5.7))'(1.3 5.7))'(1.3 5.7))
(1.3 5.7)
Command: (setq (setq (setq (setq (setq p2 p2 p2 p2 p2 '(7.5 3.1 11))'(7.5 3.1 11))'(7.5 3.1 11))'(7.5 3.1 11))'(7.5 3.1 11))
(7.5 3.1 11)
Command: (((((distance distance distance distance distance p1 p2)p1 p2)p1 p2)p1 p2)p1 p2)
6.72309

You may have missed that single quote mark in front of the list of x,y-coordinates, as in: '(1.3
5.7). That tells LISP you are creating a pair (or triple in the case of x,y,z) of coordinates, and
that it should not evaluate the numbers. Technically, the ' mark creates a list of numbers.

To separate the coordinates use spaces, not commas. Note that when you leave out the z-coor-
dinate, LISP assumes it equals 0.0000.

The Angle from 0 Degrees

Other geometric functions of interest include finding the angle from 0 degrees (usually point-
ing east) to the line defined by p1 and p2:

Command: (((((angle angle angle angle angle p1 p2)p1 p2)p1 p2)p1 p2)p1 p2)
5.88611

The result is returned in radians: 5.88611.

The Intersection of Two Lines

The intersection of two lines is determined by the inters function:

Command: (((((inters inters inters inters inters pt1 pt2 pt3 pt4)pt1 pt2 pt3 pt4)pt1 pt2 pt3 pt4)pt1 pt2 pt3 pt4)pt1 pt2 pt3 pt4)

Entity Snaps

In the following function, you are finding the midpoint of the line that starts at p1. You apply
the osnap function and specify the type of osnap; LISP returns the x,y,z-coordinates of the
entity snap point. The entity must actually exist.

Command: linelinelinelineline
From point: !p1!p1!p1!p1!p1
To point: !p2!p2!p2!p2!p2
To point: (Press ENTER.)
Command: (((((osnap osnap osnap osnap osnap p1 "mid")p1 "mid")p1 "mid")p1 "mid")p1 "mid")
(4.4 4.4 5.5)

Here "mid" refers to the midpoint entity snap mode.

Other geometric functions include textbox (for finding the rectangular outline of a line of
text) and Polar, which returns a 3D point of a specified distance and angle.

chapter 9 programming lispprogramming lispprogramming lispprogramming lispprogramming lisp 133

○ ○

Conditional Functions

You could say that conditional functions are most important, because they define the existence
of a programming language. It is conditionals that allow a computer program to “think” and
make decisions. Conditional functions check if one value is less than, equal to, or greater than
another value. They check if something is true; or they repeat an action until something is
false.

If you’re not sure if it’s a programming language or merely a macro language, check for condi-
tionals. Toolbar macros, for example, have no conditionals; they are not a programming lan-
guage.

Here is an example of how conditional functions operate: if the floor-to-ceiling distance is
greater than eight feet, then draw 14 steps; else, draw 13 steps. Notice that there are two parts
to the statement: the if part is the true part; the else part is the false part. Do something if it is
true; otherwise, so something else if it is false.

Similar wording is used in LISP’s condition functions. Enter the following at the ‘:’ prompt:

Command: (((((if if if if if (> height 96) (setq steps 14) (setq steps 13))(> height 96) (setq steps 14) (setq steps 13))(> height 96) (setq steps 14) (setq steps 13))(> height 96) (setq steps 14) (setq steps 13))(> height 96) (setq steps 14) (setq steps 13))
13

Let’s break down this code to see how the if function compares with our statement:

(((((ififififif If
(> (> (> (> (> greater than

heightheightheightheightheight floor-to-ceiling distance is
96)96)96)96)96) 8 feet;

 Then
(setq steps 14)(setq steps 14)(setq steps 14)(setq steps 14)(setq steps 14) use 14 steps.

Else
(setq steps 13)(setq steps 13)(setq steps 13)(setq steps 13)(setq steps 13) use 13 steps.

)))))

Other Conditionals

The if function is limited to evaluating just one conditional. The cond functions evaluate many
conditions. The repeat function executes a specific number of times, while the while func-
tion executes code for as long as it is true.

String and Conversion Functions

You can manipulate strings (text consisting of one or more characters) in LISP, but to a lesser
extent than numbers. For example, you can find the length of a string as follows:

Command: (((((strlen strlen strlen strlen strlen "progeCAD World")"progeCAD World")"progeCAD World")"progeCAD World")"progeCAD World")
17

The strlen (short for STRing LENgth) function tells you that “progeCAD World” has 17 char-
acters in it, counting the space. Notice how “progeCAD World” is surrounded by quotation
marks. That tells LISP you are working with a string, not a variable.

If you were to type (strlen progeCAD World), LISP tries to find the length of the strings
held by variables progeCAD and World. For example:

Command: (setq progeCAD "A software package")(setq progeCAD "A software package")(setq progeCAD "A software package")(setq progeCAD "A software package")(setq progeCAD "A software package")
"A software package"
Command: (setq world "the planet earth")(setq world "the planet earth")(setq world "the planet earth")(setq world "the planet earth")(setq world "the planet earth")
"the planet earth"

○ ○

134 tailoring progeCAD

Command: (((((strlen strlen strlen strlen strlen progeCAD world)progeCAD world)progeCAD world)progeCAD world)progeCAD world)
34

Joining Strings of Text

Other string functions change all characters to upper or lower case (strcase), returns part of a
string (substr), searches and replaces text in a string (subst), and join two strings together
(strcat), as follows:

Command: (((((strcat strcat strcat strcat strcat progeCAD " used all over " world)progeCAD " used all over " world)progeCAD " used all over " world)progeCAD " used all over " world)progeCAD " used all over " world)
"A software package used all over the planet earth"

That’s how you create reports, such as "13 steps drawn", by mixing variables and text.

Converting Between Text and Numbers

Related to string functions are the conversion functions, because some of them convert to and
from strings. For example, earlier I showed how to convert degrees to radians. That’s fine for
decimal degrees, like 45.3711 degrees. But how do you convert 45 degrees, 37 minutes and 11
seconds, which progeCAD represents as 45d37'11"? That’s where a conversion function like
angtof (short for ANGle TO Floating-point) comes in. It converts an angle string to real-num-
ber radians:

Command: (((((angtof angtof angtof angtof angtof "45d37'11\"" 1)"45d37'11\"" 1)"45d37'11\"" 1)"45d37'11\"" 1)"45d37'11\"" 1)
0.796214

Here we’ve supplied angtof with the angle in degrees-minutes-seconds format. However, LISP
isn’t smart enough to know, so we tell it by means of the mode number, 1 in this case. This (and
some other functions) use the following as mode codes:

Mode Meaning Example

0 Decimal degrees 45.3711
1 Degrees-minutes-seconds 45d 37' 11"
2 Grad 100.1234
3 Radian 0.3964
4 Surveyor units N 45d37'11" E

Notice the similarity between the mode numbers and the values of system variable AUnits.
The coincidence is not accident. When you don’t know ahead of time the current setting of
units, you make use of this fact by specifying the mode number as a variable, as follows:

Command: (angtof "45d37'11\"" ((angtof "45d37'11\"" ((angtof "45d37'11\"" ((angtof "45d37'11\"" ((angtof "45d37'11\"" (getvar getvar getvar getvar getvar "aunits"))"aunits"))"aunits"))"aunits"))"aunits"))
0.796214

Here we use getvar (short for GET VARiable), the LISP function that gets the value of a sys-
tem variable. We used getvar to get aunits, which holds the state of angular display as set by
the Units command.

Notice how the seconds indicator (") is handled: \". That’s so it doesn’t get confused with the
closing quote mark (") that indicates the end of the string.

Other Conversion Functions

Other conversion functions convert one unit of measurement into another (via the cvunit
function and the icad.unt file), an integer number into a string (itos), a character into its ASCII
value (ascii: for example, letter A into ASCII value 65), and translates (moves) a point from
one coordinate system to another (trans).

chapter 9 programming lispprogramming lispprogramming lispprogramming lispprogramming lisp 135

○ ○

External Command Functions

“Powerful” often equates to “complicated,” yet one of LISP’s most powerful functions is its
simplest to understand: the command function. As its name suggests, command executes
progeCAD commands from within LISP.

Think about it: this means that it is trivial to get LISP to draw a circle, place text, zoom a
viewport, whatever. Anything you type at the ‘Command:’ command prompt is available with
the command function. Let’s see how command works by drawing a circle. First, though,
let’s recall how the Circle command operates:

Command: circlecirclecirclecirclecircle
2Point/3Point/RadTanTan/Arc/Multiple/<Center of circle>: 2,22,22,22,22,2
Diameter/<Radius>: DDDDD
Diameter of circle: 1.51.51.51.51.5

Switching to the command function, you mimic what you type at the ‘Command:’ prompt, as
follows. (This is where Chapter 8’s practice in creating script files is handy.)

Command: (((((command command command command command "circle" "2,2" "D" "1.5")"circle" "2,2" "D" "1.5")"circle" "2,2" "D" "1.5")"circle" "2,2" "D" "1.5")"circle" "2,2" "D" "1.5")

Notice how all typed text is in quotation marks. After you enter that line of code, progeCAD
responds by drawing the circle:

Command: circle
2Point/3Point/RadTanTan/Arc/Multiple/<Center of circle>: 2,2
Diameter/<Radius> <1.2857>: D
Diameter of circle <2.5714>: 1.5

Let’s look at one of the more complex commands to use with the command function, Text.
When we use the Text command, progeCAD presents these prompts:

Command: texttexttexttexttext
Text: Style/Align/Fit/Center/Middle/Right/Justify/<Start point>: 5,105,105,105,105,10
Height of text <0.2000>: 1.51.51.51.51.5
Rotation angle of text <0>: (Press ENTER.)
Text: Tailoring progeCADTailoring progeCADTailoring progeCADTailoring progeCADTailoring progeCAD

Converted to LISP-ese, this becomes:

Command: (command "text" "5,10" "1.5" "" "Tailoring progeCAD")(command "text" "5,10" "1.5" "" "Tailoring progeCAD")(command "text" "5,10" "1.5" "" "Tailoring progeCAD")(command "text" "5,10" "1.5" "" "Tailoring progeCAD")(command "text" "5,10" "1.5" "" "Tailoring progeCAD")

And progeCAD responds with:

Command: text
Text: Style/Align/Fit/Center/Middle/Right/Justify/<Start point>: 5,10
Height of text <1.5000>: 1.5
Rotation angle of text <0>:
Text: Tailoring progeCAD

...and then draws the text.

For the ‘Rotation angle:’ prompt, we had simply pressed the Enter key. Notice how that is dealt
with in the LISP function: "" — a pair of empty quotation marks.

You use the same "" to end commands that automatically repeat themselves, such as the Line
command:

Command: (command "line" "1,2" "3,4" (command "line" "1,2" "3,4" (command "line" "1,2" "3,4" (command "line" "1,2" "3,4" (command "line" "1,2" "3,4" """""""""")))))

When you don’t include that final "", then you leave progeCAD hanging with a 'End point:'
prompt and your LISP routine fails.

By now it should be clear to you that you have to really know the prompt sequence of IntelliCAD’s
more than 300 commands to work effectively with the command function. The easiest way to
get a handle on those is to purchase one of the “quick reference” books on the market, which

○ ○

136 tailoring progeCAD

list commands in alphabetical order, along with the complete prompt sequence. And, as we see
in a minute, check that the quick reference book has a listing of all system variables, their
default value, and the range of permissible values.

Command Function Limitation

But the command function has a failing. Earlier, I said, “Anything you type at the ‘Com-
mand:’ command prompt is available with the command function.” I now place emphasis on
the word “type.” The command function breaks down completely when it comes to dialog
boxes. That’s right: any command that uses a dialog box won’t work with the command func-
tion — nor, for that matter, with the macros we looked at in previous chapters. It is for this
reason that progeCAD includes command-line versions of almost every (but not all) command.

Accessing System Variables

While you can use the command function to access system variables, LISP has a pair of more
direct functions: getvar and setvar.Getvar gets the value of a system variable, while setvar
changes (sets) the value.

For example, system variable SplFrame determines whether the frame of a spline polyline is
displayed; by default, the value of SplFrame is 0: the frame is not displayed, as confirmed by
getvar:

Command: (((((getvar getvar getvar getvar getvar "splframe")"splframe")"splframe")"splframe")"splframe")
0

To display the frame, change the value of SplFrame to 1 with setvar as follows:

Command: (((((setvar setvar setvar setvar setvar "splframe" 1)"splframe" 1)"splframe" 1)"splframe" 1)"splframe" 1)
1

We have, however, made a crass assumption: that the initial value of SplFrame is 0. Zero is
the default value, but not necessarily the value at the time that you run the LISP routine. How
do we know what the value of SplFrame is before we change it? We’ll answer that question
later in this chapter. Stay tuned.

GetXXX Functions

It’s one thing to execute a command that draws a new entity, such as the circle and text we
drew above with the command function. It is trickier working with entities that already exist,
such as moving that circle or editing the text. That’s where the a group of functions known
collectively as Getxxx come into play. These functions get data from the screen. Some of the
more useful ones include:

getpoint Returns the x,y,z-coordinate of a picked point.
getangle Returns the angle in radians.
getstring Returns the text typed by the user.
getreal Returns the value of a real number typed by the user.

Here’s how to use some of these with the Text command. Let’s redo the code with getstring
so that LISP prompts us for everything first, then executes the Text command. Here is the first
line of code, which prompts the user to input some text:

Command: (setq TxtStr ((setq TxtStr ((setq TxtStr ((setq TxtStr ((setq TxtStr (getstring getstring getstring getstring getstring T "What do you want to write? "))T "What do you want to write? "))T "What do you want to write? "))T "What do you want to write? "))T "What do you want to write? "))
What do you want to write?

chapter 9 programming lispprogramming lispprogramming lispprogramming lispprogramming lisp 137

○ ○

Notice that extra "T"; that’s a workaround that lets getstring accept a string of text with spaces.
When you leave out the T, then getstring accepts text up to the first space only, If you were to
enter “Tailoring progeCAD”, you would end up with just “Tailoring” and no “progeCAD.”

Also in the line of code above, the setq function stores the phrase, such as “Tailoring progeCAD,”
in the variable TxtStr.

In the next line of code, we use the getreal function to ask for the height of text, which is a real
number (decimal) entered by the user.

Command: (setq TxtHt ((setq TxtHt ((setq TxtHt ((setq TxtHt ((setq TxtHt (getreal getreal getreal getreal getreal "How big do you want the letters? "))"How big do you want the letters? "))"How big do you want the letters? "))"How big do you want the letters? "))"How big do you want the letters? "))
How big do you want the letters? 22222
2.0

Notice how getreal converts the 2 (an integer) to a real number, 2.0. The value is stored in
variable TxtHt.

Next, we use the getangle function to ask for the rotation angle of the text:

Command: (setq TxtAng ((setq TxtAng ((setq TxtAng ((setq TxtAng ((setq TxtAng (getangle getangle getangle getangle getangle "Tilt the text by how much? "))"Tilt the text by how much? "))"Tilt the text by how much? "))"Tilt the text by how much? "))"Tilt the text by how much? "))
Tilt the text by how much? 3030303030
0.523599

Notice how getangle converts the 30 (a decimal degree) into radians, 0.523599. The value is
stored in variable TxtAng.

Next, we use the getpoint function to ask the user for the insertion point of the text:

Command: (setq TxtIns ((setq TxtIns ((setq TxtIns ((setq TxtIns ((setq TxtIns (getpoint getpoint getpoint getpoint getpoint "Where do you want the text to start? "))"Where do you want the text to start? "))"Where do you want the text to start? "))"Where do you want the text to start? "))"Where do you want the text to start? "))
Where do you want the text to start? (Pick a point.)
(27.8068 4.9825 0.0)

Notice how getpoint returns the x, y, and z values of the coordinate, even though z is zero. The
user can pick a point on the screen, or enter a coordinate pair (x,y) or triple (x,y,z).

Finally, we execute the Text command with the four variables:

Command: (command "text" TxtIns TxtHt TxtAng TxtStr)(command "text" TxtIns TxtHt TxtAng TxtStr)(command "text" TxtIns TxtHt TxtAng TxtStr)(command "text" TxtIns TxtHt TxtAng TxtStr)(command "text" TxtIns TxtHt TxtAng TxtStr)
text Justify/Style:
Height <1.5000>: 2.000000000000000
Rotation angle <0>: 0.523598775598299
Text: Tailoring progeCAD
: nil

There! We’ve just customized the Text command to our liking. Not only did we change the
prompts that the user sees, but we used LISP to change the order of the prompts.

Selection Set Functions

To work with more than one entity at a time, LISP has a group of functions for creating selec-
tion sets. These all begin with “SS”, as in:

SsAdd Adds entities to selection sets.
SsDel Deletes entities from selection sets.
SsGetFirst Reports the number of selected entities.
SsLength Reports the number of entities in the selection set.
SsMemb Checks if entities are part of a selection set.
SsName Identifies the nth entity in a selection set.
SsSetFirst Highlights objects in a selection set.

IntelliCAD’s Select command can deal only with one selection set at a time; in contrast, the
LISP SSxxx commands can work with up to 128 selection sets.

○ ○

138 tailoring progeCAD

Entity Manipulation Functions

The really powerful LISP functions are the ones that go right in and manipulate the drawing
database. Unlike the command function, which is powerful but simple, the entity manipula-
tion functions are powerful and complicated. Here’s a summary of what some of these are:

EntMake Creates new entities.
EntGet Gets the data that describes entities in drawings.
EntMod Changes entities.
EntDel Erases entities from the database.
TblObjName Gets the names of entities in symbol tables.

The “Ent” prefix is short for entity. The “symbol table” refers to the part of the drawing data-
base that stores the names of layers, text styles, and other named entities in the drawing.

To create and manipulate entities, these LISP functions work with a variant on the DXF for-
mat, known as “dotted pairs.” For example, to work with a layer named RightOfWay, you em-
ploy the following format:

"2 . RightOfWay""2 . RightOfWay""2 . RightOfWay""2 . RightOfWay""2 . RightOfWay"

The quotation marks indicate the start and end of the data, while the dot in the middle sepa-
rates the two values: The 2 is the DXF code for layer names, and RightOfWay is the name of
the layer. You can see that to work with these entity manipulation functions, you need a good
grasp of the DXF format.

Advanced LISP Functions

There is a whole host of LISP functions that you may never use in your progeCAD program-
ming career. For example, there are LISP functions for controlling the memory, such as gc
(garbage collection) and mem (memory status). Another set of LISP functions are strictly for
loading and displaying dialog boxes, such as load_dialog and new_dialog.

chapter 9 programming lispprogramming lispprogramming lispprogramming lispprogramming lisp 139

○ ○

Writing a Simple LISP Program

 In this section, you learn the first steps in writing a LISP routine of your own.

Why Write a Program?

If you are like many CAD users, you are busy creating drawings, and you have no time to learn
how to write software programs. No doubt, you may be wondering, “Why bother learning a
programming language?” In some ways, it’s like being back again in school. Sitting in the class-
room sometimes seems like a waste of time.

But the things you learn now make life easier later. Learning some LISP programming now
means you’ll feel really good whipping off a few lines of code to let LISP perform tedious tasks
for you. The nice thing about LISP is that you can program it on the fly. And you can use it for
really simple but tedious tasks.

Here’s the example we’ll use for this tutorial:

The Id Command

progeCAD has the Id command. When you pick a point on the screen, Id reports the 3D x,y,z-
coordinates of the point. Problem is, Id reports the value in the command prompt area, like
this:

Command: ididididid
Select a point to identify coordinates: (Pick a point.)
X = 8.9227 Y = 6.5907 Z = 0.0000

Wouldn’t it be great if you could change Id so that it places the coordinates in the drawing,
next to the pick point? That would let you label x,y-coordinates and z-elevations over a site
plan. With LISP, you can.

The Plan of Attack

Before you write any LISP code, you need to figure out how you’re going to get those x,y,z-
coordinates off the command prompt area, and into the drawing. Recognize that there are two
parts to solving the problem:

Part 1. Obtain the coordinates from the drawing, probably by picking a point.

Part 2. Place the coordinates as text in the drawing.

Obtaining the Coordinates

LISP provides several ways to get the coordinates of a picked point. Browsing through the LISP
Programming Language Reference, you learn you could:

• Use the Id command with the command function, as in (command "ID").

• Use the LastPoint system variable with the getvar function, as in (getvar "lastpoint").

• Use the getpoint function, as in (getpoint "Pick a point: ")

○ ○

140 tailoring progeCAD

It would be a useful lesson to use each of the three, and then see what happens. By experiment-
ing, you make mistakes, and then learn from the mistakes.

1. Start progeCAD, load a drawing, and switch to the Prompt History window with F2.
At the ‘:’ prompt, enter:

Command: (command (command (command (command (command "ID""ID""ID""ID""ID")))))

Here you are executing an progeCAD command (Id) from within a LISP routine. The
command function lets you use any progeCAD command in LISP. The progeCAD
command is in quotation marks "ID" because the command is a string (programmer-
talk for “text”). Just as before, progeCAD prompts you for the point.

2. In response to the LISP routine’s prompt, pick a point:
Select a point to identify coordinates: (Pick a point.)
X = 8.9227 Y = 6.5907 Z = 0.0000

3. Unknown to you, progeCAD always stores the x,y,z-coordinates of the last-picked
point in a system variable called LastPoint. So, you should copy the coordinates
from LastPoint to a variable of your own making. You need to do this because the
coordinates in LastPoint are overwritten with the next use of a command that
makes use of a picked point.

Recall from in this chapter that the setq function stores values in variables. Make use
of it now. At the ‘:’ prompt, enter:

Command: (((((setq setq setq setq setq xyz (xyz (xyz (xyz (xyz (getvar getvar getvar getvar getvar "LastPoint"))"LastPoint"))"LastPoint"))"LastPoint"))"LastPoint"))
(8.9227 6.5907 0.0000)

Xyz is the name of the variable in which you store the x,y,z-coordinate.

Getvar is the name of the LISP function that retrieves the value stored in a system
variable.

And "LastPoint" is the name of the system variable; it is surrounded by quotation
marks because it is a system variable name (a string).

After entering the LISP function, progeCAD returns the value it stored in variable
xyz, such as (8.9227 6.5907 0.0000) — your result will be different. Notice how the
coordinates are surrounded by parenthesis. This is called a list, for which LISP is
famous (indeed, LISP is short for “list processing”). Spaces separate the numbers,
which are the x, y, and z-coordinates, respectively:

xxxxx 8.9227
yyyyy 6.5907
zzzzz 0.0000

progeCAD always stores the values in the order of x, y, and z. You will never find the
z- coordinate first or the x-coordinate last.

So, we’ve now solved the first problem in one manner. We obtained the coordinates from the
drawing, and then stored them in a variable. We did mention a third LISP function we could
use, getpoint. Programmers prefer getpoint because it is more efficient than the Id-
LastPoint combo we used above.

chapter 9 programming lispprogramming lispprogramming lispprogramming lispprogramming lisp 141

○ ○

Type the following to see that it works exactly the same, the difference being that we provide
the prompt text (“Point: ”):

Command: (setq xyz ((setq xyz ((setq xyz ((setq xyz ((setq xyz (getpoint getpoint getpoint getpoint getpoint "Point: "))"Point: "))"Point: "))"Point: "))"Point: "))
Point: (Pick a point.)
(8.9227 6.5907 0.0000)

As before, we use the setq function to store the value of the coordinates in variable xyz. The
getpoint function waits for you to pick a point on the screen. The "Point: " is called a prompt,
which tells the user what the program is expecting the user to do. We could just as easily have
written anything, like:

Command: (setq xyz (getpoint "Press the mouse button: "))(setq xyz (getpoint "Press the mouse button: "))(setq xyz (getpoint "Press the mouse button: "))(setq xyz (getpoint "Press the mouse button: "))(setq xyz (getpoint "Press the mouse button: "))
Press the mouse button: (Pick a point.)
(8.9227 6.5907 0.0000)

Or, we could have no prompt at all, as follows:

Command: (setq xyz (getpoint))(setq xyz (getpoint))(setq xyz (getpoint))(setq xyz (getpoint))(setq xyz (getpoint))
(Pick a point.)
(8.9227 6.5907 0.0000)

That’s right. No prompt. Just a silent progeCAD waiting patiently for the right thing to happen
... and the user puzzled at why nothing is happening. A lack of communication, you might say.
That’s why prompts are important.

We’ve now seen a couple of approaches that solve the same problem in different ways. With
the x,y,z-coordinates safely stored in a variable, let’s tackle the second problem

Placing the Text

To place text in the drawing, we can use only the command function in conjunction with the
Text command. I suppose the MText command might work, but you want to place one line of
text, and the Text command is excellent for that. The Text command is, however, trickier
than the Id command. It has a minimum of four prompts that your LISP routine must answer:

Command: text
Text: Style/Align/Fit/Center/Middle/Right/Justify/<Start point>:
Height of text <2>:
Rotation angle of text <0>:
Text:

• Start point: a pair of numbers, specifically an x,y-coordinate.

• Height of text: a number to makes the text legible.

• Rotation angle of text: a number, probably 0 degrees.

• Text: the string, in our case the x,y,z-coordinates.

○ ○

142 tailoring progeCAD

Let’s construct a LISP function for placing the x,y,z-coordinates as text:

(command (command (command (command (command "text""text""text""text""text" xyz 200 0 xyz) xyz 200 0 xyz) xyz 200 0 xyz) xyz 200 0 xyz) xyz 200 0 xyz)

(command is the command function.

"text" is the progeCAD Text command being executed.

xyz variable stores the starting point for the text.

200 is the height of the text. Change this number to something convenient for your
drawings.

0 is the rotation angle of the text.

xyz means you’re lucky: the Text command accepts numbers as text.

) and remember: one closing parenthesis for every opening parenthesis.

Try this out at the ‘:’ prompt:

Command: (command "text" xyz 200 0 xyz)(command "text" xyz 200 0 xyz)(command "text" xyz 200 0 xyz)(command "text" xyz 200 0 xyz)(command "text" xyz 200 0 xyz)
Text: Style/Align/Fit/Center/Middle/Right/Justify/<Start point>:
Height of text: 200
Rotation angle of text: 0
Text: 2958.348773815669,5740.821183398367
Command:

progeCAD runs through the Text command, inserting the responses for its prompts, then
placing the coordinates as text. We’ve solved the second part of the problem.

Putting It Together

Let’s put together the two solutions to your problem:

(setq xyz (getpoint "Pick point: "))(setq xyz (getpoint "Pick point: "))(setq xyz (getpoint "Pick point: "))(setq xyz (getpoint "Pick point: "))(setq xyz (getpoint "Pick point: "))
(command "text" xyz 200 0 xyz)(command "text" xyz 200 0 xyz)(command "text" xyz 200 0 xyz)(command "text" xyz 200 0 xyz)(command "text" xyz 200 0 xyz)

There you have it: a full-fledged LISP program. Well, not quite. It’s a pain to retype those two
lines each time you want to label a point. In the next section, you find out how to save the code
as a .lsp file on disk. You’ll also dress up the code.

chapter 9 programming lispprogramming lispprogramming lispprogramming lispprogramming lisp 143

○ ○

Adding to the Simple LISP Program

There you have it: a full-fledged LISP program. Well, not quite. What you have is the algorithm
— the core of every computer program that performs the actual work. What is lacking is most
of a user interface — the part that makes it easier for any user to employ the program.

All you have for a user interface is part of the first line that prompts, “Select point to identify
coordinates: ”. There’s a lot of user interface problems with this little program. How many can
you think of? Here’s a list of problems I came up with:

• It’s a pain to retype those two lines each time you want to label a point — you need to
give the program a name ...

• ... and you need to save it on disk so that you don’t need to retype the code with each
new progeCAD session...

• ... and, if you use this LISP program a lot, then you should have a way of having it
load automatically.

• The x,y,z-coordinates are printed to eight decimal places; for most users, that’s w-a-y
too many.

• You may want to control the layer that the text is placed on.

• You may want a specific text style.

• Certainly, you would like some control over the size and orientation of the text.

• Here’s an orthogonal idea: store the x,y,z-coordinates to a file on disk — just in case
you ever want to reuse the data.

Conquering Feature Bloat

“Okay,” you may be thinking, “I can agree that these are mostly desirable improvements. Go
right ahead, Mr. Grabowski: Show me how to add them in.”

But, wait a minute! When you’re not familiar with LISP, you may not realize how a user inter-
face adds a tremendous amount of code, which mean more bugs and more debugging. (If you
are familiar with programming, then you know how quickly a simple program fills up with
feature-bloat.) While all those added features sound desirable, they may make the program
less desirable. Can you image how irritated you’d get if you had to answer the questions about
decimal places, text font, text size, text orientation, layer name, filename — each time you
wanted to label a single point?

Take a second look at the wishlist above. Check off features important to you, and then cross
out those you could live without.

Wishlist Item #1: Naming the Program

To give the program a name, surround the code with the defun function, and give it a name, as
follows:

(((((defun defun defun defun defun c:label (/ xyz)c:label (/ xyz)c:label (/ xyz)c:label (/ xyz)c:label (/ xyz)
(setq xyz (getpoint "Pick point: "))
(command "text" xyz 200 0 xyz)
)))))

○ ○

144 tailoring progeCAD

Let's take a look at what’s benne added, piece by piece:

Defining the Function - defun

(defun defines the name of the function. In LISP, the terms function, program, and routine
are used interchangeably (defun is short for “define function.”)

Naming the Function - C:

c:label is the name of the function. I decided to call this program “Label”; you can call it
anything you like, so long as the name does not conflict with that of any built-in LISP function
or other user-defined function. The c: prefix make this LISP routine appear like an progeCAD
command.

To run the Label program, all you need do is type “label” at the ‘:’ prompt, like this:

Command: labellabellabellabellabel
Select a point to identify coordinates: (Pick a point.)

When the c: prefix is missing, however, then you have to run the program like a LISP function,
complete with the parentheses, as follows:

Command: (label)(label)(label)(label)(label)
Select a point to identify coordinates: (Pick a point.)

Local and Global Variables - /

(/ xyz) declares the names of input and local variables; the slash separates the two:

• Input variables feed data to LISP routines; the names of input variables appear
before the slash.

• Local variables are used only within programs; the names of local variables appear
after the slash.

In this program, xyz is the name of the variable that is used strictly within the program. If
variables are not declared local, they become global. The value of a global variable can be ac-
cessed by any LISP function loaded into progeCAD.

The benefit to declaring variables as local is that progeCAD automatically frees up the memory
used by the variable when the LISP program ends; the drawback is that the value is lost, mak-
ing debugging harder. For this reason, otherwise-local variables are kept global until the pro-
gram is debugged.

And the) closing parenthesis balances the opening parenthesis at the beginning of the pro-
gram.

Wishlist Item #2: Saving the Program

By saving the program to a file on disk, you avoid retyping the code with each new progeCAD
session. You do this, as follows:

1. Start a text editor (the Notepad supplied with Windows is good).

chapter 9 programming lispprogramming lispprogramming lispprogramming lispprogramming lisp 145

○ ○

2. Type the code shown:
(defun c:label (/ xyz)(defun c:label (/ xyz)(defun c:label (/ xyz)(defun c:label (/ xyz)(defun c:label (/ xyz)

(setq xyz (getpoint "Pick point: "))(setq xyz (getpoint "Pick point: "))(setq xyz (getpoint "Pick point: "))(setq xyz (getpoint "Pick point: "))(setq xyz (getpoint "Pick point: "))
(command "text" xyz 200 0 xyz)(command "text" xyz 200 0 xyz)(command "text" xyz 200 0 xyz)(command "text" xyz 200 0 xyz)(command "text" xyz 200 0 xyz)

)))))

I indented the code in the middle to make it stand out from the defun line and the
closing parenthesis. This is standard among programmers; the indents make it easier
to read code. You can use a pair of spaces or the tab key because LISP doesn’t care.

3. Save the file with the name label.lsp in IntelliCAD’s folder.

Wishlist Item #3: Automatically Loading the Program

To load the program into progeCAD, type the following:

Command: (((((load load load load load "label")"label")"label")"label")"label")

If progeCAD cannot find the LISP program, then you have to specify the path. Assuming you
saved label.lsp in the \cad\support folder, you would enter:

Command: (load "\\cad\\support\\label")(load "\\cad\\support\\label")(load "\\cad\\support\\label")(load "\\cad\\support\\label")(load "\\cad\\support\\label")

Now try using the point labelling routine, as follows:

Command: labellabellabellabellabel
Select a point to identify coordinates: (Pick a point.)

TIP progeCAD provides a way to automatically load LISP programs. When progeCAD
starts up, it looks for a file called icad.lsp. progeCAD automatically loads the names of LISP
programs listed in the file.

Adding label.lsp to icad.lsp is easy. Open the icad.lsp file with a text editor (if the file does not
exist, then start a new file called acad.lsp and store it in the \progeCAD folder). Add the name
of the program:

(load "label.lsp")(load "label.lsp")(load "label.lsp")(load "label.lsp")(load "label.lsp")

Save the icad.lsp file. Start progeCAD and it should load label automatically.

Wishlist #4: Using Car and Cdr

The x,y,z-coordinates are printed to eight decimal places — that’s too many. There are two
solutions. One is to ask the user the number of decimal places, as shown by the following code
fragment:

Command: (setq uprec ((setq uprec ((setq uprec ((setq uprec ((setq uprec (getint getint getint getint getint "Label precision: "))"Label precision: "))"Label precision: "))"Label precision: "))"Label precision: "))
Label precision: 11111
1

Or steal the value stored in system variable LUPrec — the precision specified by the user
through the Units command — under the (not necessarily true) assumption that the user want
consistent units. The code to do this is as follows:

(setq uprec ((setq uprec ((setq uprec ((setq uprec ((setq uprec (getvar getvar getvar getvar getvar "LUPREC"))"LUPREC"))"LUPREC"))"LUPREC"))"LUPREC"))

○ ○

146 tailoring progeCAD

That was the easy part. The tough part is applying the precision to the x,y,z-coordinates, which
takes three steps: (1) pick apart the coordinate triplet; (2) apply the precision factor; and (3)
join together the coordinates. Here’s how:

1. Open label.lsp in NotePad or any other text editor. Remove / xyz from the code. The
variable is now “global,” so that you can check its value at progeCAD’s ‘:’ prompt. The
code should look like this:

(defun c:label ()(defun c:label ()(defun c:label ()(defun c:label ()(defun c:label ()
(setq xyz (getpoint "Pick point: "))(setq xyz (getpoint "Pick point: "))(setq xyz (getpoint "Pick point: "))(setq xyz (getpoint "Pick point: "))(setq xyz (getpoint "Pick point: "))
(command "text" xyz 200 0 xyz)(command "text" xyz 200 0 xyz)(command "text" xyz 200 0 xyz)(command "text" xyz 200 0 xyz)(command "text" xyz 200 0 xyz)

)))))

Save, and then load label.lsp into progeCAD.

2. Run label.lsp, picking any point on the screen. If you don’t see the coordinates
printed on the screen, use the Zoom Extents command.

3. At the ‘Command:’ prompt, enter the following:
Command: !xyz!xyz!xyz!xyz!xyz
(6.10049 8.14595 10.0)

The exclamation mark forces progeCAD to print the value of variable xyz, which
holds the x,y,z-coordinates. Your results will differ, depending on where you picked.

4. LISP has several functions for picking apart a list. Here you use the car and cdr
functions, and combinations thereof. The car function extracts the first item (the x-
coordinate) from a list. Try it now:

Command: (((((car car car car car xyz)xyz)xyz)xyz)xyz)
6.10049

5. The cdr function is the compliment to car. It removes the first item from the list,
and then gives you what’s left over:

Command: (((((cdr cdr cdr cdr cdr xyz)xyz)xyz)xyz)xyz)
(8.14595 10.0)

6. In addition to car and cdr, LISP allows me to combine the “a” and “d” in several
ways to extract other items in the list. To extract the y-coordinate, use cadr, as
follows:

Command: (((((cadr cadr cadr cadr cadr xyz)xyz)xyz)xyz)xyz)
8.14595

7. And to extract the z-coordinate, use caddr, as follows:
Command: (((((caddr caddr caddr caddr caddr xyz)xyz)xyz)xyz)xyz)
8.14595

8. I now have a way to extract the x-coordinate, the y-coordinate, and the z-coordinate
from variable xyz. I’ll store them in their own variables, as follows:

Command: (setq ptx ((setq ptx ((setq ptx ((setq ptx ((setq ptx (car car car car car xyz)xyz)xyz)xyz)xyz)
Missing: 1) > pty (pty (pty (pty (pty (cadr cadr cadr cadr cadr xyz)xyz)xyz)xyz)xyz)
Missing: 1) > ptz (ptz (ptz (ptz (ptz (caddr caddr caddr caddr caddr xyz)xyz)xyz)xyz)xyz)
Missing: 1) >)))))

chapter 9 programming lispprogramming lispprogramming lispprogramming lispprogramming lisp 147

○ ○

You use variable PtX to store the x-coordinate, PtY for the y-coordinate, and so on.
In addition, a form of LISP shorthand was used in the code above that allows you
apply the setq function to several variables. Recall the reason for progeCAD’s ‘Miss-
ing: 1) >’ prompt: it reminds you that a closing parenthesis is missing.

9. Now that the three coordinates are separated, you can finally reduce the number of
decimal places. There are a couple of ways to do this. Use the rtos function, because
it does two things at once: (1) changes the number of decimal places to any number
between 0 and 8; and (2) converts the real number into a string. Why a string? You’ll
see later. For now, here is the rtos function at work:

Command: (((((rtos rtos rtos rtos rtos ptx 2 uprec)ptx 2 uprec)ptx 2 uprec)ptx 2 uprec)ptx 2 uprec)
"6.1"

The rtos function uses three parameters:

PtX Name of the variable holding the real number.
2 Type of conversion, decimal in this case. The number 2 is based on system variable LUnits,

which defines five modes of units:

Mode Units

1 Scientific
2 Decimal
3 Engineering
4 Architectural
5 Fractional

UPrec Name of the variable holding the precision (the code for that is at the beginning of this
section). This varies, depending on the type of units. For example, a value of 2 for
decimal means two decimal places; a 2 for architectural means quarter-inch.

Assuming, then, that the precision in UPrec is 1, the rtos function in the code
fragment above reduces 6.10049 to 6.1.

10. Truncate, and preserve the values of x, y, and z three times, as follows:
Command: (setq ptx ((setq ptx ((setq ptx ((setq ptx ((setq ptx (rtos rtos rtos rtos rtos ptx 2 uprec)ptx 2 uprec)ptx 2 uprec)ptx 2 uprec)ptx 2 uprec)
1> pty (pty (pty (pty (pty (rtos rtos rtos rtos rtos pty 2 uprec)pty 2 uprec)pty 2 uprec)pty 2 uprec)pty 2 uprec)
1> ptz (ptz (ptz (ptz (ptz (rtos rtos rtos rtos rtos ptz 2 uprec)ptz 2 uprec)ptz 2 uprec)ptz 2 uprec)ptz 2 uprec)
1>)))))

Notice that you can set a variable equal to itself: PtX holds the new value of the x-
coordinate after rtos gets finished processing the earlier value stored in PtX. Reus-
ing a variable name like this helps conserve memory.

11. With the coordinates truncated, you now have to string (pardon the pun) them to-
gether with the strcat function, short for string concatenation. Try it now:

Command: (((((strcat strcat strcat strcat strcat ptx pty ptz)ptx pty ptz)ptx pty ptz)ptx pty ptz)ptx pty ptz)
"6.18.110.0"

12. Oops! Not quite the look you may have been hoping for. Since LISP can’t know when you
want spaces, it provides none. You have to insert them yourself using strcat, one of the
most useful LISP functions. It lets you create a string that contains text and variables,
like this:

○ ○

148 tailoring progeCAD

Command (setq xyz ((setq xyz ((setq xyz ((setq xyz ((setq xyz (strcat strcat strcat strcat strcat ptx ", " pty ", " ptz))ptx ", " pty ", " ptz))ptx ", " pty ", " ptz))ptx ", " pty ", " ptz))ptx ", " pty ", " ptz))
"6.1, 8.1, 10.0"

That’s more like it!

13. Back to the text editor. Add in the code you developed here, shown in boldface, and
with LISP functions in cyan:

(defun c:label (/ xyz xyz1 uprec ptx pty ptz)
(((((setq setq setq setq setq uprec (uprec (uprec (uprec (uprec (getint getint getint getint getint "Label precision: "))"Label precision: "))"Label precision: "))"Label precision: "))"Label precision: "))
(((((setq setq setq setq setq xyz (xyz (xyz (xyz (xyz (getpoint getpoint getpoint getpoint getpoint "Pick point: "))"Pick point: "))"Pick point: "))"Pick point: "))"Pick point: "))
(((((setq setq setq setq setq ptx (ptx (ptx (ptx (ptx (car car car car car xyz)xyz)xyz)xyz)xyz)

 pty (pty (pty (pty (pty (cadr cadr cadr cadr cadr xyz)xyz)xyz)xyz)xyz)
 ptz (ptz (ptz (ptz (ptz (caddr caddr caddr caddr caddr xyz)xyz)xyz)xyz)xyz)

)))))
(((((setq setq setq setq setq ptx (ptx (ptx (ptx (ptx (rtos rtos rtos rtos rtos ptx 2 uprec)ptx 2 uprec)ptx 2 uprec)ptx 2 uprec)ptx 2 uprec)

 pty (pty (pty (pty (pty (rtos rtos rtos rtos rtos pty 2 uprec)pty 2 uprec)pty 2 uprec)pty 2 uprec)pty 2 uprec)
 ptz (ptz (ptz (ptz (ptz (rtos rtos rtos rtos rtos ptz 2 uprec)ptz 2 uprec)ptz 2 uprec)ptz 2 uprec)ptz 2 uprec)

)))))
(setq xyz1 (strcat ptx ", " pty ", " ptz))
(command "text" xyz 200 0 xyz1)

)

Notice that all variables are local. Notice, too, the change to variable xyz in the last
couple of lines: you don’t want the text placed at the rounded-off coordinates, so use
xyz1 as the variable holding the text string.

14. Finally, you should add comments to your code to remind you what it does when you
look at the code several months from now. Semicolons indicate the start of com-
ments:

; Label.Lsp labels a picked point with its x,y,z-coordinates.; Label.Lsp labels a picked point with its x,y,z-coordinates.; Label.Lsp labels a picked point with its x,y,z-coordinates.; Label.Lsp labels a picked point with its x,y,z-coordinates.; Label.Lsp labels a picked point with its x,y,z-coordinates.
; by Ralph Grabowski, 25 February, 1996.; by Ralph Grabowski, 25 February, 1996.; by Ralph Grabowski, 25 February, 1996.; by Ralph Grabowski, 25 February, 1996.; by Ralph Grabowski, 25 February, 1996.
(defun c:label (/ xyz xyz1 uprec ptx pty ptz)

; Ask user for the number of decimal places:; Ask user for the number of decimal places:; Ask user for the number of decimal places:; Ask user for the number of decimal places:; Ask user for the number of decimal places:
(setq uprec (getint "Label precision: "))
; Ask the user to pick a point in the drawing:; Ask the user to pick a point in the drawing:; Ask the user to pick a point in the drawing:; Ask the user to pick a point in the drawing:; Ask the user to pick a point in the drawing:
(setq xyz (getpoint "Pick point: "))
; Separate 3D point into individual x,y,z-values:; Separate 3D point into individual x,y,z-values:; Separate 3D point into individual x,y,z-values:; Separate 3D point into individual x,y,z-values:; Separate 3D point into individual x,y,z-values:
(setq ptx (car xyz)

pty (cadr xyz)
ptz (caddr xyz)

)
; Truncate values:; Truncate values:; Truncate values:; Truncate values:; Truncate values:
(setq ptx (rtos ptx 2 uprec)

pty (rtos pty 2 uprec)
ptz (rtos ptz 2 uprec)

)
; Recombine individual values into a 3D point; Recombine individual values into a 3D point; Recombine individual values into a 3D point; Recombine individual values into a 3D point; Recombine individual values into a 3D point:
(setq xyz1 (strcat ptx ", " pty ", " ptz))
; Place text:; Place text:; Place text:; Place text:; Place text:
(command "text" xyz 200 0 xyz1)

)

15. Save the file as label.lsp, then load the LISP routine into progeCAD with:
Command: (load "label")(load "label")(load "label")(load "label")(load "label")
"C:LABEL"

chapter 9 programming lispprogramming lispprogramming lispprogramming lispprogramming lisp 149

○ ○

16. Run the routine, and respond to the prompts:
Command: labellabellabellabellabel
Label precision: 11111
Pick point: (Pick a point.)
text Justify.../<Start point>:
Height of text <200.0000>: 200
Rotation angle of text <0>: 0
Text: 5012.3, 773.2, 0.0
Command:

Saving Data to Files

In the previous tutorial, we begin to worry about user interface enhancements. What started
out as two lines of code has now bulged out into 23. In this tutorial, we learn how to fight
feature bloat (more later), and add the ability to save data to a file.

A reader wrote me with this wishlist item: “The LISP file comes in very handy with some of the
programs I use, but I would like to be able to save the data collected on the x,y,z-coordinates in
a text file.”

Saving the data to file is easily done with the open, write-line, and close functions. Let’s
take a look at how to do this. Dealing with files in LISP is simpler than for most programming
languages because LISP has very weak file access functions. All it can do is read and write
ASCII files in sequential order; LISP cannot deal with binary files nor can it access data in
random order.

The Three Steps

There are three steps in writing data to a file:

Step 1. Open the file.

Step 2. Write the data to the file.

Step 3. Close the file.

Step 1: Open the File

LISP has the open function for opening files. The function lets you open files for one of three
purposes: (1) read data from the file; (2) write data to the file; or (3) append data to the file.
You must choose one of these at a time; LISP cannot do all three at once.

In all cases, LISP takes care of creating the file if it does not already exist. Reading data is easy
enough to understand, but what’s the difference between “writing” and “appending” data?

• When I ask progeCAD to open a file to write, all existing data in that file is erased,
and then the new data is added.

• When I ask progeCAD to open a file to append, the new data is added to the end of
the existing data.

○ ○

150 tailoring progeCAD

For our purpose, we want to keep adding data to the file, so choose append mode. The LISP
code looks like this:

(setq FIL ((setq FIL ((setq FIL ((setq FIL ((setq FIL (open open open open open "xyzdata.txt" "xyzdata.txt" "xyzdata.txt" "xyzdata.txt" "xyzdata.txt" "a""a""a""a""a"))))))))))

Here you are setting something (through setq) equal to a variable named FIL. What is that?
In pretty much all programming languages, we don’t deal with the file name directly, but in-
stead deal with a file descriptor. This is a name (some sequence of letters and numbers) to
which the operating system assigns the file name. Now that you have the file descriptor stored
in variable FIL, you work with FIL, not the file name, which I have decided to call xyzdata.txt.

The final "a" tells LISP you want to open xyzdata.txt for appending data. It is important that
the "a" be lowercase; this is one of the very few occasions when LISP is case-sensitive. The
options for the open function are:

Option Comment

"a" Append data to end of file.
"w" Write data to file (erase existing data).
"r" Read data from file.

Step 2: Write Data to the File

To write data to files, use the write-line function. This function writes one line of data at a
time. (Another function, the write function, writes single characters to files.) The code looks
like this:

(((((write-linewrite-linewrite-linewrite-linewrite-line xyz1 fil) xyz1 fil) xyz1 fil) xyz1 fil) xyz1 fil)

You cannot, however, just write raw data to the file because it would look like three decimal
points and a lot of digits, like this:

8.15483.27520.00008.15483.27520.00008.15483.27520.00008.15483.27520.00008.15483.27520.0000

Most software is able to read data with commas separating numbers, like this:

8.1548, 3.2752, 0.00008.1548, 3.2752, 0.00008.1548, 3.2752, 0.00008.1548, 3.2752, 0.00008.1548, 3.2752, 0.0000

That includes spreadsheets, database programs, and even some word processing software. I
tell these programs that when they read the data, they should consider the comma to be a
separator and not a comma. In that way, the spreadsheet program places each number in its
own cell. With each number in its own cell, I can manipulate the data. For this reason, you
need code that formats the data.

Fortunately, you’ve done that already. Last tutorial, you used the strcat function along with
the cdr, cadr, and caddr functions to separate the x, y, and z components of the coordinate
triplet. So you can reuse the code, which looks like this:

(setq ptx (car xyz)(setq ptx (car xyz)(setq ptx (car xyz)(setq ptx (car xyz)(setq ptx (car xyz)
pty (cadr xyz)pty (cadr xyz)pty (cadr xyz)pty (cadr xyz)pty (cadr xyz)
ptz (caddr xyz)ptz (caddr xyz)ptz (caddr xyz)ptz (caddr xyz)ptz (caddr xyz)

)))))
(setq xyz1 ((setq xyz1 ((setq xyz1 ((setq xyz1 ((setq xyz1 (strcat strcat strcat strcat strcat ptx ", " pty ", " ptz))ptx ", " pty ", " ptz))ptx ", " pty ", " ptz))ptx ", " pty ", " ptz))ptx ", " pty ", " ptz))

The strcat function places the commas between the coordinate values.

chapter 9 programming lispprogramming lispprogramming lispprogramming lispprogramming lisp 151

○ ○

Step 3: Close the File

Finally, for good housekeeping purposes, close the file. progeCAD will automatically close the
file for you if you forget, but a good programmers clean up after themselves. Closing the file is
as simple as:

(((((close close close close close fil)fil)fil)fil)fil)

Putting It Together

Add the code for opening, formatting, writing, and closing to the lable.lsp program:

(defun c:label (/ xyz xyz1 uprec ptx pty ptz)
(setq uprec (getint "Label precision: "))
(setq xyz (getpoint "Pick point: "))
(setq ptx (car xyz)

pty (cadr xyz)
ptz (caddr xyz)

)
; Format the x,y,z coordinates:
(setq ptx (rtos ptx 2 uprec)

pty (rtos pty 2 uprec)
ptz (rtos ptz 2 uprec)

)
; Add commas between the three coordinates:

(setq xyz1 (strcat ptx ", " pty ", " ptz))
; Write coordinates to the drawing:
(command "text" xyz 200 0 xyz1)
; Open the data file for appending:; Open the data file for appending:; Open the data file for appending:; Open the data file for appending:; Open the data file for appending:
(setq fil (open "xyzdata.txt" "a"))(setq fil (open "xyzdata.txt" "a"))(setq fil (open "xyzdata.txt" "a"))(setq fil (open "xyzdata.txt" "a"))(setq fil (open "xyzdata.txt" "a"))
; Write the line of data to the file:; Write the line of data to the file:; Write the line of data to the file:; Write the line of data to the file:; Write the line of data to the file:
(write-line xyz1 fil)(write-line xyz1 fil)(write-line xyz1 fil)(write-line xyz1 fil)(write-line xyz1 fil)
; Close the file:; Close the file:; Close the file:; Close the file:; Close the file:
(close fil)(close fil)(close fil)(close fil)(close fil)

)

Using a text editor, such as Notepad, make the additions (shown in boldface above) to your
copy of lable.lsp. Load it into progeCAD with the load function:

Command: (load "label")(load "label")(load "label")(load "label")(load "label")

And run the program by entering Label at the ‘:’ prompt:

Command: labellabellabellabellabel
Label precision: 4 4 4 4 4
Pick point: (Pick a point.)

As you pick points on the screen, the routine labels the picked points, but also writes the 3D
point data to file. After a while, this is what the data file looks something like this:

8.1548, 3.2752, 0.0000
7.0856, 4.4883, 0.0000
6.4295, 5.6528, 0.0000
5.5303, 6.7688, 0.0000
5.4331, 8.3215, 0.0000

○ ○

152 tailoring progeCAD

Wishlist #5: Layers

Let’s take a moment to revisit the wishlist. One wishlist item is to control the layer on which the
text is placed. There are two ways to approach this wishlist item:

• The no-code method is to set the layer before starting the LISP function.

• The LISP-code version is to ask the user for the name of the layer, then use the
setvar function to set system variable CLayer (much easier than using the Layer
command), as follows:

(setq lname (getstring "Label layer: "))(setq lname (getstring "Label layer: "))(setq lname (getstring "Label layer: "))(setq lname (getstring "Label layer: "))(setq lname (getstring "Label layer: "))
(((((setvar setvar setvar setvar setvar "CLAYER" lname)"CLAYER" lname)"CLAYER" lname)"CLAYER" lname)"CLAYER" lname)

Add those two line before the line with the “Pick point” prompt.

Wishlist #6: Text Style

To specify the text style, there are the same two methods. The no-code method is to simply set
the text style before starting the routine. Otherwise, you can write LISP code similar to set the
style with the setvar command, as follows:

(setq tsname (getstring "Label text style: "))(setq tsname (getstring "Label text style: "))(setq tsname (getstring "Label text style: "))(setq tsname (getstring "Label text style: "))(setq tsname (getstring "Label text style: "))
(((((setvar setvar setvar setvar setvar "TEXTSTYLE" tsname)"TEXTSTYLE" tsname)"TEXTSTYLE" tsname)"TEXTSTYLE" tsname)"TEXTSTYLE" tsname)

Once again, add those two line before the line with the “Pick point” prompt.

By now, you may be noticing that your program is starting to look big. This is called “feature
bloat.” More features, especially in the area of user interface, makes software grow far beyond
the size of its basic algorithm.

Tips in Using LISP

To conclude this chapter, here are tips for helping out when you write your LISP functions.

Tip #1. Use an ASCII Text Editor.

LISP code must be written in plain ASCII text — no special characters and no formatting (like
bolface or color) of the sort that word processors add to the file. When you write LISP code
with, say, Word, then save as a .doc-format file (the default), progeCAD will simply refuse to
load the LISP file, even when the file extension is .lsp.

In an increasingly Window-ized world, it is harder to find a true ASCII text editor. There is one,
however, supplied free by Microsoft with Windows called Notepad. Do not use Write or WordPad
supplied with Windows. While both of these have an option to save in ASCII, you’re bound to
forget sometimes and end up frustrated.

Almost any other word processor has an option to save text in plain ASCII, but not by default.
Word processors have a number of different terms for what I mean by “pure ASCII format.”
Word calls it “Text Only”; WordPerfect calls it “DOS Text”; WordPad calls it “Text Document”;
and Atlantis calls it “Text Files.” You get the idea.

chapter 9 programming lispprogramming lispprogramming lispprogramming lispprogramming lisp 153

○ ○

Tip #2: Loading LSP Code into progeCAD

To load the LISP code into progeCAD, you use the load function. Here’s an example where
points.lsp is the name of the LISP routine:

Command: (((((load load load load load "points")"points")"points")"points")"points")

You don’t need to type the .lsp extension.

When progeCAD cannot find points.lsp, you need to specify the folder name by using either a
forward slash or double backslashes — your choice:

Command: (load "(load "(load "(load "(load "\\\\\\\\\\progeCADprogeCADprogeCADprogeCADprogeCAD\\\\\\\\\\points")points")points")points")points")

After you’ve typed this a few times, you’ll find it gets tedious. To solve the problem, write a one-
line LISP routine that reduces the keystrokes, like this:

Command: (defun (defun (defun (defun (defun c:x ()c:x ()c:x ()c:x ()c:x () (load "points")) (load "points")) (load "points")) (load "points")) (load "points"))

Now anytime you need to load the points.lsp routine, you just type X and press Enter, as
follows:

Command: xxxxx

Under Windows, you could also just drag the .lsp file from the File Manager into progeCAD.
Note that the code moves one way: from the text editor to progeCAD; you cannot drag the code
from progeCAD back to the text editor.

Tip #3: Toggling System Variables

One problem in programming is: How to change a value when you don’t know what the value
is? In progeCAD, you come across this problem with system variables, many of which are toggles.
A toggle system variable has a value of 0 or 1, indicating that the value is either off (0) or on (1).
For example, system variable SplFrame is by default 0: when turned off, splined polylines do
not display their frame.

No programmer ever assumes that the value of SplFrame is going to be zero just because
that’s its default value. In the case of toggle system variables, there two solutions:

(1) Employ the if function to see if the value is 0 or 1.

(2) Subtract 1, and take the absolute value.

Tip #4: Be Neat and Tidy.

Remember, your mother told you to always pick up your things. This problem of setting system
variables applies universally. When your LISP routine changes values of system variables, it
must always set them back to the way they were before the routine began running.

Many programmers write a set of generic functions that save the current settings at the begin-
ning of the routine, carries out the changes, and then restores the saved values at the end of the
routine. Here’s a code fragment that shows this, where the original value of SplFrame is
stored in variable SplVar using getvar, and then restored with setvar:

(((((setq setq setq setq setq splvar splvar splvar splvar splvar (((((getvar getvar getvar getvar getvar "splframe"))"splframe"))"splframe"))"splframe"))"splframe"))
...
(((((setvar setvar setvar setvar setvar "splframe" "splframe" "splframe" "splframe" "splframe" splvarsplvarsplvarsplvarsplvar)))))

○ ○

154 tailoring progeCAD

Tip #5: UPPER vs. lowercase

In (almost) all cases, LISP doesn’t care if you use UPPERCASE or lowercase for writing the
code. For legibility, there are some conventions:

• LISP function names in all lowercase.

• Your function names in Mixed Case.

• progeCAD variables and command names in all UPPERCASE.

As I said, LISP doesn’t care, and converts everything into uppercase in any case. It also strips
out all comments, excess white space, tabs, and return characters. The exception is text in
quote marks, such as prompts, which are left as is.

There are two exception where LISP does care: when you are working with file functions, es-
cape codes, and the letter T. The open function uses the arguments "r", "w", and "a" to read
to, write from, and append to a file, respectively. Those three characters must be lowercase.

Escape codes are used in text strings, and must remain lowercase. For example, \e is the es-
cape character (equivalent to ASCII 27) and \t is the tab character. Note that they use
backslashes; it is for this reason that you cannot use the backslash for separating folders names
back in Tip #2. LISP would think you were typing an escape code.

And some functions use the letter T as a flag. It must remain uppercase.

Tip # 6: Quotation Marks as Quotation Marks

As we have seen, LISP uses quotation marks " and " for strings. Thus, you cannot use a quota-
tion mark as for displaying quotation marks and inches, such as displaying 25 inches as 25".

The workaround is to use the escape codes mentioned above in Tip #5, specifically the octal
code equivalent for the ASCII character for the quotation mark. Sound complicated? It is. But
all you need to know is 042. Here’s how it works:

First, assign the strings to variables, as follows:

(setq disttxt "The length is ")(setq disttxt "The length is ")(setq disttxt "The length is ")(setq disttxt "The length is ")(setq disttxt "The length is ")
(setq distval 25)(setq distval 25)(setq distval 25)(setq distval 25)(setq distval 25)
(setq qumark (setq qumark (setq qumark (setq qumark (setq qumark "\042""\042""\042""\042""\042")))))

Notice how I assigned octal 042 to variable qumark. The backslash tells LISP the numbers
following are in octal. Octal, by the way, is half of hexadecimal: 0 1 2 3 4 5 6 7 10 11 12 ... 16 17
20 21 ...

Then concatenate the three strings together with the strcat function:

(((((strcat strcat strcat strcat strcat distxt distval qumark)distxt distval qumark)distxt distval qumark)distxt distval qumark)distxt distval qumark)

To produce the prompt:

The length is 25"The length is 25"The length is 25"The length is 25"The length is 25"

chapter 9 programming lispprogramming lispprogramming lispprogramming lispprogramming lisp 155

○ ○

Tip #7: Tabs and Quotation Marks

Vijay Katkar is writing code for a dialog box with a list box. He told me, “I want to display
strings in it — just like the dialog box displayed by the Layer command. I am able to concat-
enate the values and print the strings but there is no vertical alignment, since the strings are of
different lengths. I tried using the tab metacharacter (\t) in the string but it prints the literal '\t'
in the list box. Is there any way I can get around this problem?”

I recall a similar problem: How to display quotation marks or the inches symbol within a text
string? For example, I have a line of LISP code that I want to print out as:

The diameter is 2.54"The diameter is 2.54"The diameter is 2.54"The diameter is 2.54"The diameter is 2.54"

Normally, I cannot use the quotation (") character in a string. LISP uses the quotation as its
string delimiter to mark the beginning and ending of the string. In the following line of code:

(prompt "The diameter is 2.54"")(prompt "The diameter is 2.54"")(prompt "The diameter is 2.54"")(prompt "The diameter is 2.54"")(prompt "The diameter is 2.54"")

LISP sees the first quotation mark as the start of the string, the second quotation as the end of
the string, and the third quotation mark as an error.

The solution is the \nnn metacharacter. This lets me insert any ASCII character, including
special characters, such as tab, escape, and quotation marks. The workaround here is to use
the ASCII code for the quotation mark, \042, like this:

(prompt "The diameter is 2.54\042")(prompt "The diameter is 2.54\042")(prompt "The diameter is 2.54\042")(prompt "The diameter is 2.54\042")(prompt "The diameter is 2.54\042")

Similarly, Vijay needs to use the \009 metacharacter to space the text in his dialog box. And,
in fact, that worked: “According to what you had told me, I used the same and it worked.”

○ ○

ralph grabowski156 tailoring progeCAD

dCL allows programmers to create custom dialog boxes. (DCL is short for “dialog control
language.”) Indeed, some of progeCAD’s dialog boxes are written in DCL, rather than being
hard-coded; look for .dcl files in progeCAD’s folders.

DCL is a structured language that describes all the elements (called “tiles”) that make up dialog
boxes: edit boxes, list boxes, radio buttons, image tiles, and so on. Each tile has one or more
attributes, such as its position, background color, and the action it performs. Applications written
in LISP, SDS, and DRX can make use of DCL for dialog boxes.

Autodesk provides no programming environment to help you create DCL files — it’s hand cod-
ing all the way. That means the Notepad text editor becomes your DCL programming environ-
ment. Some third-party developers created DCL development tools. (If you program with VBA,
then DCL is not needed.)

When working with DCL and LISP, you need to write two pieces of code:

• .dcl files that define the dialog box and the function of its tiles.

• .lsp files that load the .dcl files, and activate the tiles.

TIP DCL is still under development in progeCAD, and so not all of this chapter’s
examples will necessarily work.

12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567

In This Chapter

• History of DCL • Writing and testing DCL code
• What dialog boxes are made of • LISP code to run DCL

C • H • A • P • T • E • R 10

Introduction to DCL

○ ○

chapter 10 introduction to dclintroduction to dclintroduction to dclintroduction to dclintroduction to dcl 157

12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567

History of DCL

Autodesk first introduced DCL (short for “dialog control language”) in AutoCAD Release 11 for Windows as an
undocumented feature. DCL is a syntax for creating platform-independent dialog boxes.
At that time, Autodesk was producing versions of AutoCAD for “every viable engineering platform,” which
included DOS, Windows, Unix, Macintosh, and OS/2. DCL was part of a project code-named “Proteus,”
whose aim was to make AutoCAD work and look identical on every operating system.
As the two figures below show, the project was a success. The DOS and Windows dialog boxes look very
similar. Here is AutoCAD Release 11’s Drawing Modes dialog box running on DOS:

And here is the same dialog box in AutoCAD Release 11 for Windows:

By Release 14, however, Proteus was meaningless, because Autodesk chose to support only the Windows
operating system. But DCL still hangs around as the only way to create dialog boxes with AutoLISP.
More recently, the Open Design Alliance added DCL to its offerings, and members of the IntelliCAD Technical
Consortium adopted it, including progeCAD.

○ ○

ralph grabowski158 tailoring progeCAD

Thus, working with dialog boxes always involves a pair of files, .dcl and .lsp. And it’s the LISP
code that controls the dialog box code.

A drawback to DCL is that it cannot self-modify dialog boxes, such as adding or removing
buttons.

What Dialog Boxes Are Made Of

Dialog boxes can consist of many elements, such as radio buttons, sliders, images, tabs, and
check boxes. (These elements are called “tiles.) DCL allows you to create many elements — but
not all. The figure below illustrates some of the dialog box elements that are possible with DCL.
The boldface text names the specific DCL tiles. (Those tiles not possible with DCL can be cre-
ated through VBA, which is not discussed in this ebook.)

Boxed_Column

Tabs not possible

Image

Button

Edit_Box

Ok_Cancel

Toggle

Dialog : Label

Some tiles are invisible, such as some of the ones highlighted below by white rectangles:

List_Box

Inactive tile (grayed out)
Column

Radio_Column

Row

Boxed_Radio_Column

Two pieces of code are always required to make dialog boxes operate: (1) DCL code specifies
the layout of tiles and their attributes in the dialog box; and (2) LSP code activates the dialog
box. progeCAD automatically sizes dialog boxes for you, and stacks tiles in columns by default.

○ ○

chapter 10 introduction to dclintroduction to dclintroduction to dclintroduction to dclintroduction to dcl 159

Some back and forth is permitted while running DCL and LSP files; this is called a “callback.”
For example, the file name “Drawing1.dwg” is inserted in the dialog box by the LISP getvar
function calling system variable DwgName. Callbacks are also used to gray out buttons and to
change the content of popup lists (droplists).

This chapter shows how to write DCL and LISP code. The next chapter provides you with a
comprehensive reference to all DCL tiles, their attributes, and related LISP functions.

Your First DCL File

Before writing code for dialog boxes, it is helpful to plan out the tiles. Where in the dialog box
will the buttons, droplists, and text entry boxes go? The best thing is to get a pencil, and then
sketch your idea on paper.

For this tutorial, we create a dialog box that displays the values stored in these system vari-
ables:

LastPoint — the last 3D point entered in the drawing.

LastAngle — the angle defined by the last two points entered.

LastPrompt — the last text entered by the user at the command line.

Think about how the dialog box would be constructed. It would probably have three lines of
text reporting the name and value of each system variable. It would have an OK button to exit
the dialog box. And it might have a title that explains the purpose of the dialog box.

It might look like this:

Title for the
dialog box.

System variable
names and data.

OK button
to exit dialog box.

○ ○

ralph grabowski160 tailoring progeCAD

TIPS To grab the screen image of dialog boxes, hold down the Alt key, and then press
Prt Scr. That captures just the dialog box to the Clipboard. Switch to a paint program,
such as PaintShop Pro, and then press Ctrl+V to paste the image. (This is the method I
use in this ebook.)

The DCL and LSP files that you create for AutoCAD can also be used with IntelliCAD. Note
that there may be some differences, because IntelliCAD does not support all DCL and
AutoLISP functions and their parameters. Some of these differences are documented by
Adeko of Greece at www.adeko.com.tr/forum/topic.asp?TOPIC_ID=1263 and by IcadWeb
of Japan at www.icadweb.com/doc/help/dr/IDR_DCL_B1.htm.

For example, IntelliCAD adds these attributes to the edit_box tile:
typeface specifies the TrueType font.
pointsize specifies the size of text.
read_only prevents text from being edited.
lower_only reads text as lower case.
upper_only reads text as all uppercase.

DCL Metacharacters Meaning

// (slash-slash) Indicates a comment line.
/* (slash-asterisk) Starts comment section.
*/ (asterisk-slash) Ends comment section.
: 1 (colon) Starts a tile definition.
{ (brace) Starts dialog and tile attributes.

(space) Separates symbols.
= (equals) Defines attribute values.
"" (quotations) Encloses text attributes.
; 2 (semi-colon) Ends attribute definition.
} (brace) Ends tile and dialog attributes.

Notes:
1 Predefined tiles, such as spacer, are not prefixed with the colon.
2 Every attribute must end with a semi-colon.

○ ○

chapter 10 introduction to dclintroduction to dclintroduction to dclintroduction to dclintroduction to dcl 161

DCL Programming Structure

The programming structure of the dialog box might look like this:

Start dialog box definition.
Dialog box title.
Column of system variable names and data.
OK button.

End of dialog box.

In this first tutorial, we will first write just enough code to display the dialog box and the OK
button. Later, we add bells and whistles.

Start Dialog Box Definition

The .dcl files that define dialog boxes begin with a name. This is the name by which the code is
later on called by the associated LISP routine.

namenamenamenamename: dialog {

Like LISP, the open brace needs a closing brace to signal the end of the dialog box definition:

}

For this tutorial, let’s call it “lastInput,” as follows:

lastInputlastInputlastInputlastInputlastInput: dialog {
}

The name is case-sensitive, so “lastInput” is not the same to LISP as “LastINPUT” or “lastinput.”

Dialog Box Title

The label property gives the dialog box its title.

namenamenamenamename: dialog {
label = "Dialog box titleDialog box titleDialog box titleDialog box titleDialog box title";

}

For this tutorial, label it “Last Input,” as follows:

lastInputlastInputlastInputlastInputlastInput: dialog {
label = "Last InputLast InputLast InputLast InputLast Input";

}

The title text needs to be surrounded by quotation marks. The label property must be termi-
nated with the semi-colon. And it’s helpful to indent the code to make it readable.

OK Button

Every dialog box needs an exit button, either OK or Cancel — otherwise there is no way to exit
it. If no button, then progeCAD refuses to run the DCL code, and instead displays a warning.

Before we test our DCL code for the first time, we need to include code for the OK button. It is
shown in color:

○ ○

ralph grabowski162 tailoring progeCAD

lastInput: dialog {
label = "Last Input";
: button button button button button {

key = "okButton";
label = " OK ";
is_default = true;

}
}

Buttons are defined with the button property; the properties of the button are enclosed in
braces:

: button button button button button {
}

Because dialog boxes can have multiple buttons, every button must be identified by the “key”
property. The key allows LISP to give the button its instructions later on. Identify this OK
button as “okButton” with the key attribute, as follows:

key key key key key = "okButton";

The button needs to display a label for users. This is the OK button, so label it “OK” with the
label attribute, as follows:

label label label label label = " OK ";

To make life easier for users, one tile of the dialog box is made the default. Dialog boxes high-
light the default tile in some way, such as the dashed outline of the OK button. When a button
is the default, users need only press Enter to activate it. Make this button the default one with
the is_default attribute, as follows:

is_default is_default is_default is_default is_default = true;

TIP This DCL code for the OK button is like a subroutine. Its code can be used and
reused any time a dialog box needs an OK button, which is pretty much every time. Later,
we see how to create subroutines in DCL code.

: button {
key = "okButton";
label = " OK ";
is_default = true;

}

○ ○

chapter 10 introduction to dclintroduction to dclintroduction to dclintroduction to dclintroduction to dcl 163

12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567

Basic LISP Code to Load and Run Dialog Boxes

The following LISP code loads, runs, and exits the lastInput.dcl file:
(defun defun defun defun defun C:xx ()

(setq dlg-id (load_dialogload_dialogload_dialogload_dialogload_dialog "c:\\lastInput"))
(new_dialognew_dialognew_dialognew_dialognew_dialog "lastInput" dlg-id)
(action_tileaction_tileaction_tileaction_tileaction_tile "accept" "(done_dialog)")
(start_dialogstart_dialogstart_dialogstart_dialogstart_dialog)
(unload_dialogunload_dialogunload_dialogunload_dialogunload_dialog dlg-id)

)

Let’s take apart the code to see how it operates.
(defun defun defun defun defun C:xx ()

The function is defined as “xx” with LISP’s defun function. Programming = debugging, so I like to use an
easy-to-enter name for the LISP routine, like “xx.”

(setq dlg-id (load_dialogload_dialogload_dialogload_dialogload_dialog "c:\\lastInput"))

The lastInput.dcl file is loaded with the load_dialog function. There is no need to specify the “.dcl” extension,
because this function’s sole purpose is to load DCL files. Recall that LISP requires you to use \\ instead of \ for
separating folder names.

(new_dialognew_dialognew_dialognew_dialognew_dialog "lastInput" dlg-id)

DCL files can contain more than one dialog box definition, so the next step is to tell progeCAD which one you
want with the new_dialog function. In this case, we have just the one, “lastInput.”

(action_tileaction_tileaction_tileaction_tileaction_tile "okButton" "(done_dialog)")

Our dialog box contains a button named “okButton,” and its purpose is defined by LISP — not DCL! Here we
use the action_tile function to assign the “okButton” button its purpose in life: to execute the done_dialog
function that exits the dialog box. You can read this as “the action for the tile named okButton is ...”. In short,
click OK to exit the dialog box. In place of “(done_dialog)” you can use any AutoLISP code you like.

(start_dialogstart_dialogstart_dialogstart_dialogstart_dialog)

After all these preliminaries, the big moment arrives. The start_dialog function launches the dialog box, and
waits then for you to click its button.

(unload_dialogunload_dialogunload_dialogunload_dialogunload_dialog dlg-id)

As neat programmers, we unload the dialog box from memory with the unload_dialog function.
)

 And a final parenthesis ends the xx function.

○ ○

ralph grabowski164 tailoring progeCAD

Testing the DCL Code

We have enough DCL code to test it, and see how the dialog box is developing. To test the code,
take these steps:

1. Open Notepad or another ASCII text editor.

2. Enter the code we developed earlier:

3. Save the file as lastinput.dcl to the C:\ drive, so that the LISP xx.lsp routine can find it.
4. Enter the LISP code described on the previous page:

5. Save the file as xx.lsp, also on the C:\ drive.

6. Switch to progeCAD, and drag the xx.lsp file from Windows Explorer into the drawing
window. This is much easier than using the AppLoad command or the load function!

7. Type xx to run the routine and load the dialog box:
Command: xxxxxxxxxx

Notice that the dialog box appears. Click OK to exit it.

label = "Last Input";

: button { key = "okButton";}

is_default = true;label = "OK";

○ ○

chapter 10 introduction to dclintroduction to dclintroduction to dclintroduction to dclintroduction to dcl 165

Displaying System Variable Data

The basic structure of the dialog box is in place: the label and the OK button. Let’s add the data
displayed by the system variables. They will look something like this:

Last angle: 45
Last point: 1,2,3
Last prompt: Line

The colored text is static, and acts like a prompt. The italicized text is variable; its display
depends on the value of the associated variable.

The Text tile displays text in dialog boxes, as follows:

: text text text text text {
label = "Last angle: ";
key = "lastAngle";

}

Are you able to recognize the attributes of this text tile?

: text text text text text {

...begins the text tile.

label label label label label = "Last angle: ";

The label attribute provides the prompt, ‘Last angle: ’.

key key key key key = "lastAngle";

The key attribute identifies the text tile as “lastAngle.”

}

And the text tile is closed with the brace.

TIP Text tiles can have the following attributes, as described fully in the DCL reference
later in this ebook:

• alignment
• fixed_height
• fixed_width
• height
• is_bold
• key
• label
• value
• width

Load and run the DCL code; it displays the ‘Last angle:’ text:

The next step is to add the display of the value stored by the LastAngle system variable.

○ ○

ralph grabowski166 tailoring progeCAD

Add a second text tile:

: text {
value = "";
key = "lastAngleData";

}

This one is initially blank, because it has no label and no value. To complete the text tile, we
need a LISP function that extracts the value from the LastAngle system variable, and shows it
in the dialog box.

The DCL file now looks like this, with the new code shown in color:

lastInput: dialog {
label = "Last Input";
: text {

label = "Last angle: ";
key = "lastAngle";

}
: text {

value = "";
key = "lastAngleData";

}
: button {

key = "okButton";
label = "OK";
is_default = true;

}
}

Adding the Complimentary LISP Code

Writing DCL code is always only half the job. The other half is to write the complementary code
in AutoLISP. To extract the value from LastAngle, we take two steps:

Step 1: Use the getvar function, and then store (setq) the gotten value in variable lang (short
for “last angle”), as follows:

(setq setq setq setq setq lang (getvar getvar getvar getvar getvar "LastAngle"))

Step 2: Use the set_tile function to set the value of lang to the “lastAngleData” tile:

(set_tile set_tile set_tile set_tile set_tile "lastAngleData" (rtos lang 2 2))

TIP Tiles can only work with text. The value of LastAngle is a real number (contains a
decimal), so we have to convert it to text with the rtos function:

(rtos lang 2 2))
This converts the real number to a string (a.k.a. text) using mode 2 (decimal) and
precision 2 (two decimal places).

With the new lines of code shown in color, the LSP file now looks like this:

(defun C:xx ()
(setq dlg-id (load_dialog "c:\\lastInput"))
(new_dialog "lastInput" dlg-id)
(setq lang (getvar "lastangle"))
(set_tile "lastAngleData" (rtos lang 2 2))

○ ○

chapter 10 introduction to dclintroduction to dclintroduction to dclintroduction to dclintroduction to dcl 167

(action_tile "okButton" "(done_dialog)")
(start_dialog)
(unload_dialog dlg-id)

)

Save the .dcl and .lsp files, and then reload and rerun xx.lsp in progeCAD. The dialog box looks
like this:

Clustering Text

Hmmm... that stacked text is a problem. The solution is to cluster the two text tiles so that they
appear next to each other. This is done with the Row tile, as shown in color:

: row row row row row {
: text {

label = "Last angle: ";
key = "lastAngle";

}
: text {

value = "";
key = "lastAngleData";

}
}

Modify the DCL file, and then rerun the LSP file. The result should look better, like this:

With the last angle text looking proper, we can copy and paste its code, and then make suitable
modifications to create the other two lines of text. The changes are shown in color, first for the
DCL code for the last point:

: row {
: text {

label = "Last point: ";
key = "lastPoint";

}
: text {

value = "";
key = "lastPointData";

}
}

○ ○

ralph grabowski168 tailoring progeCAD

And then for last prompt:

: row {
: text {

label = "Last prompt: ";
key = "lastPrompt";

}
: text {

value = "";
key = "lastPromptData";

}
}

Running xx.lsp gives us all three prompts, but we still need to fill in the data for two of them:

Supplying the Variable Text

The data is supplied by LISP code. Recall that LISP returns the value of points as list of three
numbers, such as:

(1.0000 2.0000 3.0000)

The numbers represent the x, y, and z coordinate, respectively. To convert the list to three real
numbers represented as a string — why does it have to be so hard?! — use the following code.
This assumes that lpt contains (1.0000 2.0000 3.0000):

(car car car car car lpt)

The car function extracts the x-coordinate from the list as a real number, such as 1.0000.
Similarly:

(cadr cadr cadr cadr cadr lpt)
(caddr caddr caddr caddr caddr lpt)

The cadr and caddr functions extract the y (2.0000) and z (3.0000) coordinates, respec-
tively. To convert the real numbers to strings, use the rtos function, as follows:

(rtos rtos rtos rtos rtos (car lpt))
(rtos rtos rtos rtos rtos (cadr lpt))
(rtos rtos rtos rtos rtos (caddr lpt)))

And then to convert the three individual strings to one string, use the strcat (string concat-
enation) function, as follows:

(strcatstrcatstrcatstrcatstrcat
(rtos (car lpt))
(rtos (cadr lpt))
(rtos (caddr lpt))

)

○ ○

chapter 10 introduction to dclintroduction to dclintroduction to dclintroduction to dclintroduction to dcl 169

This will result in a display of 1.000 2.000 3.000. It would be nice to put commas between the
numbers:

(strcatstrcatstrcatstrcatstrcat
(rtos (car lpt)) ","
(rtos (cadr lpt)) ","
(rtos (caddr lpt))

)

Putting both lines of code together, we arrive at the LISP needed to implant the value of the
LastPoint system variable in the dialog box:

(setq lpt (getvar "lastpoint"))
(set_tile "lastPointData" (strcat (rtos (car lpt)) "," (rtos (cadr lpt)) "," (rtos (caddr lpt))))

Add the code to the xx.lsp, and then run it in progeCAD to see the result.

Leaving Room for Variable Text

Oops, the text is cut off. The dialog box is sized before the LISP code inserts the data, so it
doesn’t know that the dialog box needs to be bigger to accommodate the x,y,z coordinates —
which can run to many characters in length.

The solution is to use the width attribute for three of the text tiles, like this:

: text {
value = "";
key = "lastAngleData";
width width width width width = 33;

}

When added to the DCL file, the result looks like this:

Fixing the Button Width

The other thing that looks wrong to me is the width of the OK button. To make it narrower (i.e.,
fix its width), use the fixed_width attribute in the DCL file:

fixed_width fixed_width fixed_width fixed_width fixed_width = true;

○ ○

ralph grabowski170 tailoring progeCAD

By setting it to true, the button is only as wide as it needs to be.

Centering the Button

The button is right-justified by default; use the alignment attribute to center the button in
the dialog box:

alignment alignment alignment alignment alignment = center;

Add the new code to the button portion of the DCL file...

: button {
key = "okButton";
label = "OK";
is_default = true;
alignment = centered;
fixed_width = true;

}

...and then rerun the xx.lsp file to see that the centered OK button is properly sized.

Testing the Dialog Box

It’s always a good idea to test the dialog box under a number of situations. Use the Line com-
mand to draw a few lines, and then run the xx.lsp routine. The values displayed by the dialog
box should be different.

○ ○

chapter 10 introduction to dclintroduction to dclintroduction to dclintroduction to dclintroduction to dcl 171

Defining the Command

So far, we’ve been running xx.lsp to develop and test the dialog box. Now that it’s running
properly, we should change xx to something more descriptive. Rename the LISP file as last.lsp,
and change the function name inside to C:last, and make the variables local, as follows:

(defun c:last (/ dlg-id lang lpt lcmd)
(setq dlg-id (load_dialog "c:\\lastInput"))
(new_dialog "lastInput" dlg-id)
(setq lang (getvar "lastangle"))

(set_tile "lastAngleData" (rtos lang))
(setq lpt (getvar "lastpoint"))

(set_tile "lastPointData" (strcat (rtos (car lpt)) "," (rtos (cadr lpt)) "," (rtos (caddr lpt))))
(setq lcmd (getvar "lastprompt"))

(set_tile "lastPromptData" lcmd)
(action_tile "okButton" "(done_dialog)")
(start_dialog)
(unload_dialog dlg-id)

)

The DCL file looks like this, in its entirety:

lastInput: dialog {
label = "Last Input";
: row {

: text {
label = "Last angle: ";
key = "lastAngle";

}
: text {

value = "";
key = "lastAngleData";
width = 33;

}
}
: row {

: text {
label = "Last point: ";
key = "lastPoint";

}
: text {

value = "";
key = "lastPointData";
width = 33;

}
}
: row {

: text {
label = "Last prompt: ";
key = "lastPrompt";

}
: text {

value = "";
key = "lastPromptData";
width = 33;

}

○ ○

ralph grabowski172 tailoring progeCAD

}
: button {

key = "okButton";
label = "OK";
is_default = true;
alignment = centered;
fixed_width = true;

}
}

If you would like to have this command loaded automatically each time you start progeCAD,
add last.lsp to the AppLoad command’s list of files to load.

○ ○

chapter 10 introduction to dclintroduction to dclintroduction to dclintroduction to dclintroduction to dcl 173

Examples of DCL Coding

With the basic tutorial behind you, let’s take a look at how to code other types of dialog box
features. In this last part of the chapter, we look at how to code the following tiles:

Buttons
Check boxes (toggles)
Radio buttons
Clusters (columns and rows)

Recall that two pieces of code are always required: (1) the DCL code that specifies the layout of
the dialog box, and (2) the LSP code that activates the dialog box.

The next chapter provides you with a comprehensive reference to all DCL tiles, their attributes,
and related LISP functions.

Buttons

In the preceding tutorial, you coded an OK button that allowed you to exit the dialog box. It
turns out that you don’t need to do that, because DCL pre-codes a number of buttons and other
dialog box elements for you. These are in a file called ourbase.dcl that is normally loaded into
progeCAD automatically. (The full list is provided in the next chapter).

The names of the pre-built buttons are:

Prebuilt Tile Button(s) Displayed

ok_only OK
ok_cancel OK Cancel
ok_cancel_help OK Cancel Help
ok_cancel_help_info OK Cancel Help Info...
Ok_Cancel_Help_Errtile OK Cancel Help plus space for error messages.

Use these prebuilt tiles to ensure a consistant look for your dialog boxes. Here is an example of
how to use these buttons in DCL files:

ok_onlyok_onlyok_onlyok_onlyok_only;

It’s that simple. Notice that the tile name lacks the traditional colon (:) prefix, but does require
the semi-colon (;) terminator.

DCL allows you to create buttons that have text for labels (button tile) or images
(image_button tile). To indicate that a button opens another dialog box, use an ellipsis (...),
as illustrated by the Info... button, above.

In addition to text and image buttons, settings can be changed with check boxes (toggle tile)
and radio buttons (radio_button tile), as described next.

○ ○

ralph grabowski174 tailoring progeCAD

Making Buttons Work

It’s one thing to populate a dialog box with buttons; it’s another to have them execute com-
mands. OK and Cancel are easy, because their functions have already been defined for you.

Let’s see how to make buttons labeled Plot and Preview work. The dialog box looks like this:

The purpose of the Plot button is to execute the Plot command, and Preview button the Pre-
view command.

(The easy solution would be add an action attribute to each button, because it executes LISP
functions, such as command "plot". But we cannot use it, because LISP does not allow the
highly-useful command function to be used in this attribute.)

The key to this problem is the key attribute, which gives buttons identifying names by which
LISP functions can reference them, such as:

key key key key key = "plot";

Then, over in the LISP file, you use the action-tile function to execute the Plot command.
Well, not quite. It has the same restriction against use of the command function, so we must
approach this indirectly by getting action_tile to refer to a second LISP routine, such as
(action_tile "plot" "(cmd-plot)").

But even this will not work, because we need our dialog box to disappear from the screen, and
be replaced by the Plot dialog box. The solution is to get even more indirect:

(action_tileaction_tileaction_tileaction_tileaction_tile "plot" "(setq nextDlg 1) (done_dialogdone_dialogdone_dialogdone_dialogdone_dialog)")

"plot" — identifies the Plot button through its key, “plot”.

(setq nextDlg 1) — records that the user clicked the Plot button, for further processing
later on.

(done_dialog) — closes the dialog box.

This is done twice, once for when the user clicks the Plot button, and again for when the user
clicks the Preview button. The Preview button’s code is similar; changes are shown in boldface:

(action_tile "previewpreviewpreviewpreviewpreview" "(setq nextDlg 22222) (done_dialog)")

Then we need some code that decides what to do when nextDlg is set to 1 or 2:

(if (= nextDlg 11111) (cmd-plot))
(if (= nextDlg 22222) (cmd-preview))

When nextDlg = 1, then the following subroutine is run:

(defun cmd-plot ()
(initdia initdia initdia initdia initdia 1)
(command "plot")

)

○ ○

chapter 10 introduction to dclintroduction to dclintroduction to dclintroduction to dclintroduction to dcl 175

The purpose of the initdia function is to force progeCAD to display the dialog box of the Plot
command; otherwise, the prompts are displayed at the command line. If that’s what you pre-
fer, then comment out the line of code:

(defun cmd-plot ()
(initdia 1)(initdia 1)(initdia 1)(initdia 1)(initdia 1)
(command "plot")

)

When nextDlg = 2, then the following subroutine is run:

(defun cmd-preview ()
(command "preview")

)

Let’s look at all the code. First, in the DCL file, we add the key attributes to each button, as
follows:

x: dialog { label = "Plot";
: row {

: button { label = "Plot"; mnemonic = "P"; key = plot;key = plot;key = plot;key = plot;key = plot; }
: button { label = "Preview"; mnemonic = "v"; key = "preview";key = "preview";key = "preview";key = "preview";key = "preview"; }
cancel_button;

} }

Second, in the LISP file, we add the code that executes the Plot and Preview commands. Code
that relates to the Plot button is shown boldface, while Preview-related code is shown in color:

(defun c:xx (/)
(setq dlg-id (load_dialog "c:\\x"))
(new_dialog "x" dlg-id)

(action_tile "plot" "(setq nextDlg 1) (done_dialog)")(action_tile "plot" "(setq nextDlg 1) (done_dialog)")(action_tile "plot" "(setq nextDlg 1) (done_dialog)")(action_tile "plot" "(setq nextDlg 1) (done_dialog)")(action_tile "plot" "(setq nextDlg 1) (done_dialog)")
(action_tile "preview" "(setq nextDlg 2) (done_dialog)")(action_tile "preview" "(setq nextDlg 2) (done_dialog)")(action_tile "preview" "(setq nextDlg 2) (done_dialog)")(action_tile "preview" "(setq nextDlg 2) (done_dialog)")(action_tile "preview" "(setq nextDlg 2) (done_dialog)")

(start_dialog)
(unload_dialog dlg-id)
(if (= nextDlg 1) (cmd-plot))(if (= nextDlg 1) (cmd-plot))(if (= nextDlg 1) (cmd-plot))(if (= nextDlg 1) (cmd-plot))(if (= nextDlg 1) (cmd-plot))
(if (= nextDlg 2) (cmd-preview))(if (= nextDlg 2) (cmd-preview))(if (= nextDlg 2) (cmd-preview))(if (= nextDlg 2) (cmd-preview))(if (= nextDlg 2) (cmd-preview))

)

(defun cmd-plot ()(defun cmd-plot ()(defun cmd-plot ()(defun cmd-plot ()(defun cmd-plot ()
(initdia 1)(initdia 1)(initdia 1)(initdia 1)(initdia 1)
(command "plot")(command "plot")(command "plot")(command "plot")(command "plot")

)))))

(defun cmd-preview ()(defun cmd-preview ()(defun cmd-preview ()(defun cmd-preview ()(defun cmd-preview ()
(command "preview")(command "preview")(command "preview")(command "preview")(command "preview")

)))))

○ ○

ralph grabowski176 tailoring progeCAD

Check Boxes

Check boxes are created by the toggle tile. Check boxes allow you to have one or more options
turned on. This is in contrast to radio buttons, which limit you to a single choice.

Let’s create a checkbox that changes the shape of point objects through the PdMode system
variable. (Yes, there is the DdPType command, but we’ll make ours different.) The system
variable can have these values...

PdMode Meaning

0 Dot (.)
1 Nothing
2 Plus (+)
3 Cross (x)
4 Short vertical line (|)
32 Circle
64 Square

... in addition, you can have any combination of these numbers. For example, 34 makes a circle
with a plus symbol (32 + 2). A peculiarity: 32 is actually a circle with dot (32 + 0), while 33 is
just the circle (32 + 1). Same goes for the square.

Let’s create a dialog box that lets us select combinations of plus, circle, and square. To make
the dialog box look like this...

: column { label = "Select a point style: " ;
: toggle { key = "plus" ; label = "Plus" ; value = "1" ; }

x: dialog { label = "Point Style";

ok_cancel;

: toggle { key = "circle" ; label = "Circle" ; }
: toggle { key = "square" ; label = "Square" ; }

... takes this code:

x: dialog dialog dialog dialog dialog { label label label label label = "Point Style";
: column column column column column { label label label label label = "Select a point style: " ;

: toggle toggle toggle toggle toggle { key key key key key = "plus" ; label label label label label = "Plus" ; value value value value value = "1" ; }
: toggle toggle toggle toggle toggle { key key key key key = "circle" ; label label label label label = "Circle" ; }
: toggle toggle toggle toggle toggle { key key key key key = "square" ; label label label label label = "Square" ; }

}
ok_cancelok_cancelok_cancelok_cancelok_cancel;

}

Notice that value = "1" turns on the Plus option (shows a check mark). Now we need to turn
to the LSP file and make this dialog box work. Something as simple as (action_tile "plus" "(setvar
"pdmode" 2)") doesn’t work, because users might select more than one option — which is the
whole point to toggles.

We need to (1) read what the users have checked, (2) add up the settings, and then (3) set
PdMode to show the desired point style.

○ ○

chapter 10 introduction to dclintroduction to dclintroduction to dclintroduction to dclintroduction to dcl 177

1. To read user input from dialog boxes, you employ AutoLISP’s $value variable, like this
for the Plus toggle:

(action_tile "plus" "(setq plusVar $value$value$value$value$value)")

Repeat the code for the other two toggles, Circle and Square:
(action_tile "circle" "(setq circleVar $value)")
(action_tile "square"(setq squareVar $value)")

2. The $value variable contains just 1s and 0s. We will use a lookup table to convert these
into the values expected by PdMode. For instance, if Plus is selected ("1"), then PdMode
expects a value of 2. The lookup table uses the if function:

(if if if if if (= plusVar "1") (setq plusNum 2) (setq plusNum 0))

This can be read as:
If If If If If plusVar = 1, then set plusNum = 2;
otherwise, set plusNum = 0.

Repeat the lookup code for the other two toggles, Circle and Square:
(if (= squareVar "1") (setq squareNum 64) (setq squareNum 0))
(if (= circleVar "1") (setq circleNum 32) (setq circleNum 0))

TIP The $value retrieved by get_tile is actually a string, like "1". The PdMode system
variable, however, expects an integer. Thus, the lookup table performs the secondary
function of “converting” strings to integers.

With the values set to what PdMode expects, add them up:

(setq setq setq setq setq vars (+++++ plusNum circleNum squareNum))

3. To change the value of PdMode, you employ AutoLISP’s setvar function, like this:
(setvar setvar setvar setvar setvar "pdmode" vars)

Now that we’re done, here is all of the LSP code:

(defun c:xx (/)
(setq dlg-id (load_dialog "c:\\x"))
(new_dialog "x" dlg-id)

;; Get the current values from each toggle tile:
(setq plusVar plusVar plusVar plusVar plusVar (get_tile "plus"))
(setq circleVar circleVar circleVar circleVar circleVar (get_tile "circle"))
(setq squareVar squareVar squareVar squareVar squareVar (get_tile "square"))

;; See which toggles the user clicks:
(action_tile "plus" "(setq plusVar plusVar plusVar plusVar plusVar $value)")
(action_tile "circle" "(setq circleVar circleVar circleVar circleVar circleVar $value)")
(action_tile "square" "(setq squareVar squareVar squareVar squareVar squareVar $value)")

(start_dialog)
(unload_dialog dlg-id)

;; Lookup table converts "0"/"1" strings to the correct integers:
(if (= plusVar plusVar plusVar plusVar plusVar "1") (setq plusNum 2) (setq plusNum 0))
(if (= circleVar circleVar circleVar circleVar circleVar "1") (setq circleNum 32) (setq circleNum 0))
(if (= squareVar squareVar squareVar squareVar squareVar "1") (setq squareNum 64) (setq squareNum 0))

○ ○

ralph grabowski178 tailoring progeCAD

;; Add up the integers, and then change system variable:
(setq vars vars vars vars vars (+ plusNum circleNum squareNum))
(setvar "pdmode" varsvarsvarsvarsvars)

)

Here are some of the point styles generated by this dialog box:

Radio Buttons

Radio buttons are easier than toggles, because only one can be active at a time. Let’s create a
dialog box that uses radio buttons to set the isoplane. The dialog box changes the value of the
SnapIsoPair system variable:

SnapIsoPair Meaning

0 Left isoplane (default).
1 Top isoplane.
2 Right isoplane.

To make the dialog box look like this...

: column { label = "Change the isoplane to: " ;

: radio_button { key = "left" ; label = "Left isoplane" ; value = "1" ; }

x: dialog { label = "Isoplane";

ok_cancel;

: radio_button { key = "top" ; label = "Top isoplane" ; }
: radio_button { key = "right" ; label = "Right isoplane" ; }

spacer;

... takes this code:

x: dialog dialog dialog dialog dialog { label label label label label = "Isoplane";
: column column column column column { label label label label label = "Change the isoplane to: " ;

: radio_buttonradio_buttonradio_buttonradio_buttonradio_button { key key key key key = "left" ; label label label label label = "Left isoplane" ; value value value value value = "1" ; }
: radio_buttonradio_buttonradio_buttonradio_buttonradio_button { key key key key key = "top" ; label label label label label = "Top isoplane" ; }
: radio_button radio_button radio_button radio_button radio_button { key key key key key = "right" ; label label label label label = "Right isoplane" ; }
spacerspacerspacerspacerspacer;

}
ok_cancelok_cancelok_cancelok_cancelok_cancel;

}

Notice that value = "1" turns on the Left isoplane option (shows a dot).

Before going on to the accompanying LSP file, set up progeCAD to display isometric mode:

○ ○

chapter 10 introduction to dclintroduction to dclintroduction to dclintroduction to dclintroduction to dcl 179

1. Enter the Settings command.

If necessary, choose the Coordinate Input tab, and then select Snap and Grid from the
Change Settings For drop list.

2. Select Isometric snap and grid.

3. Click OK.

progeCAD is now in isometric mode. As you use the dialog box described below, the cursor
changes its orientation:

Left: Cursor for the left isoplane.
Center: Cursor for the top isoplane.
Right: Cursor for the right isoplane.

Let’s now turn to the LISP file to make this dialog box work. It is similar to the code used for
toggles; the primary difference is that the values are not added up:

(defun c:xx (/)
(setq dlg-id (load_dialog "c:\\x"))
(new_dialog "x" dlg-id)

;; See which radio button the user clicks:
(action_tile "left" "(setq leftVar $value)")
(action_tile "top" "(setq topVar $value)")
(action_tile "right" "(setq rightVar $value)")

(start_dialog)
(unload_dialog dlg-id)

;; Lookup table:
(if (= leftVar "1") (setq vars 0))
(if (= topVar "1") (setq vars 1))
(if (= rightVar "1") (setq vars 2))

;; Change system variable:
(setvar "snapisopair" vars)

)

We have been cheating, because we forced the dialog box to show the Left isoplane as the
default. This is not necessarily true. We really should modify the DCL and LISP code to make
the dialog box show which isoplane is the default. This is done with AutoLISP’s set_tile func-
tion.

First, change the DCL code so that it no longer makes the Left isoplane the default: change
value = "1" to "":

value = ""

○ ○

ralph grabowski180 tailoring progeCAD

In the LSP code, we need to (1) extract the value of SnapIsoPair with getvar, and then (2) use
set_tile as a callback.

1. Extact the current value of SnapIsoPair:
(setq vars (getvar getvar getvar getvar getvar "snapisopair"))

2. Set the default button:
(if (= vars 00000) (set_tile "leftleftleftleftleft" "1"))

This reads, as follows:
If the value of SnapIsoPair is 0 (= vars 0),
then turn on the Left isoplane radio button (set_tile "left" "1").

Do similar code for the other two radio buttons:
(if (= vars 11111) (set_tile "toptoptoptoptop" "1"))
(if (= vars 22222) (set_tile "rightrightrightrightright" "1"))

The other change we need to make is to change some of the variables to local:

(defun c:xx (/ leftVar topVar rightVarleftVar topVar rightVarleftVar topVar rightVarleftVar topVar rightVarleftVar topVar rightVar)

This forces the three variables to lose their values when the LSP routine ends. The reason they
need to do this is because otherwise rightVar keeps its value (it’s the last one) and makes
Right isoplane the default every time.

With these three changes in place, the improved code looks like this — with changes high-
lighted in boldface:

(defun c:xx (/ leftVar topVar rightVar leftVar topVar rightVar leftVar topVar rightVar leftVar topVar rightVar leftVar topVar rightVar)
(setq vars (getvar "snapisopair"))(setq vars (getvar "snapisopair"))(setq vars (getvar "snapisopair"))(setq vars (getvar "snapisopair"))(setq vars (getvar "snapisopair"))
(setq dlg-id (load_dialog "c:\\x"))
(new_dialog "x" dlg-id)

;; Set the default button:;; Set the default button:;; Set the default button:;; Set the default button:;; Set the default button:
(if (= vars 0) (set_tile "left" "1"))(if (= vars 0) (set_tile "left" "1"))(if (= vars 0) (set_tile "left" "1"))(if (= vars 0) (set_tile "left" "1"))(if (= vars 0) (set_tile "left" "1"))
(if (= vars 1) (set_tile "top" "1"))(if (= vars 1) (set_tile "top" "1"))(if (= vars 1) (set_tile "top" "1"))(if (= vars 1) (set_tile "top" "1"))(if (= vars 1) (set_tile "top" "1"))
(if (= vars 2) (set_tile "right" "1"))(if (= vars 2) (set_tile "right" "1"))(if (= vars 2) (set_tile "right" "1"))(if (= vars 2) (set_tile "right" "1"))(if (= vars 2) (set_tile "right" "1"))

;; See which radio button the user clicks:
(action_tile "left" "(setq leftVar $value)")
(action_tile "top" "(setq topVar $value)")
(action_tile "right" "(setq rightVar $value)")

(start_dialog)
(unload_dialog dlg-id)

;; Lookup table:
(if (= leftVar "1") (setq vars 0))
(if (= topVar "1") (setq vars 1))
(if (= rightVar "1") (setq vars 2))

;; Change system variable:
(setvar "snapisopair" vars)

)

○ ○

chapter 10 introduction to dclintroduction to dclintroduction to dclintroduction to dclintroduction to dcl 181

Now each time the dialog box starts, it correctly displays the default isoplane, such as “top” as
illustrated below:

Clusters

Clusters help you combine related groups of controls. DCL lets you have vertical, horizontal,
boxed, and unboxed clusters. Radio clusters are required when you want to have two radio
buttons on at the same time. Otherwise, clusters are needed only for visual and organizational
purposes.

DCL makes it look as if there are eight tiles for creating clusters:

Column Row
Boxed_Column Boxed_Row
Radio_Column Radio_Row
Boxed_Radio_Column Boxed_Radio_Row

These eight options can be reduced to three when you take the following into account:

• The column tile is usually not needed, because progeCAD automatically stacks tiles
vertically into a column.

• The column and row tiles display a box as soon as you include a label for them.

• Tiles with radio in their names are only for clustering radio buttons.

Columns and Rows

progeCAD normally stacks tiles, so no column tile is needed, as illustrated by this DCL code:

x: dialog {
: button { label = "&Button&Button&Button&Button&Button" }
: button { label = "&Click&Click&Click&Click&Click" }
: button { label = "&Pick&Pick&Pick&Pick&Pick" }
ok_only;

}

: button { label = "&Button" }

: button { label = "&Click" }

ok_only;

: button { label = "&Pick" }

○ ○

ralph grabowski182 tailoring progeCAD

(The ampersand — & — specifies the shortcut keystroke that accesses the button from the
keyboard with the Alt key, such as pressing Alt+B.) To create a horizontal row of tiles, use the
row tile, as shown in boldface below:

x: dialog {
: row {: row {: row {: row {: row {

: button { label = "&Button" }
: button { label = "&Click" }
: button{ label = "&Pick" }

}}}}}
ok_only;

}

The horizontal row is invisible, so I highlighted it with the white rectangle in the figure below.

Because the ok_only tile is outside of the row {} tile, it is located outside of the cluster,
stacked vertically below the row of three buttons.

Boxed Row

To display a rectangle (a.k.a. box) around the buttons, use the boxed_row tile, as follows:

x: dialog {
: boxed_row {: boxed_row {: boxed_row {: boxed_row {: boxed_row {
// et cetera
}}}}}
ok_only;

}

The box is made of white and gray lines to give it a chiseled 3D look.

Boxed Row with Label

You can add text to describe the purpose of the boxed buttons with the label attribute, as
shown in boldface below:

x: dialog {
: boxed_row { label = "Three Buttons";: boxed_row { label = "Three Buttons";: boxed_row { label = "Three Buttons";: boxed_row { label = "Three Buttons";: boxed_row { label = "Three Buttons";
// et cetera
}}}}}
ok_only;

}

○ ○

chapter 10 introduction to dclintroduction to dclintroduction to dclintroduction to dclintroduction to dcl 183

The curious thing is that you get the same effect whether using the boxed_row or row tile.
That’s right: when you add a label to the row tile, progeCAD displays a box around the cluster.

To avoid the box, preceed the row with the text tile for the title, as follows:

x: dialog {
: text { label = "Three Buttons";}: text { label = "Three Buttons";}: text { label = "Three Buttons";}: text { label = "Three Buttons";}: text { label = "Three Buttons";}
: row {
// et cetera
}
ok_only;

}

Special Tiles for Radio Buttons

You can use the regular row and column tiles with radio buttons, except in one case: when you
need more than one radio button to be turned on. Recall that only one radio button can be on
(show the black dot) at a time; progeCAD automatically turns off all other radio buttons that
might be set to on (value = "1").

The solution is to use two or more radio_column tiles, each holding one of the radio button
sets that need to be on. Examples of this are given in the next chapters.

It is not recommended to use rows for radio buttons, because they make it psychologically
more difficult for users to chose.

○ ○

ralph grabowski184 tailoring progeCAD

Debugging DCL

The most common errors are due to errors in punctuation, such as leaving out a closing semi-
colon or quotation mark. These problems are announced by dialog boxes illustrated later in
this section.

Dcl_Settings

DCL contains a debugger. Add the following code to the beginning of the DCL file, before the
dialog tile:

dcl_settings dcl_settings dcl_settings dcl_settings dcl_settings : defalut_dcl_settings defalut_dcl_settings defalut_dcl_settings defalut_dcl_settings defalut_dcl_settings { audit_levelaudit_levelaudit_levelaudit_levelaudit_level = 3 ; }
x : dialog { // et cetera

The debugger operates at four levels:

Audit Level Meaning

0 No debugging performed.
1 (Default) Checks for DCL errors that may terminate progeCAD,s uch as undefined

tiles and circular prototype definitions.
2 Checks for undesirable layouts and behaviors such as missing attributes and

wrong attribute values.
3 Checks for redundant attribute definitions.

DCL Error Messages

progeCAD displays DCL-related error messages in dialog boxes. Some of the ones you may
encounter include these:

Dialog has neither an OK nor a CANCEL button

Dialog boxes need to exit through the OK or Cancel button. At the very least, add the ok_only
tile to the DCL file. (DCL was written before Windows automatically added the x (cancel) but-
ton to all dialog boxes, and Autodesk has failed to update DCL to take this innovation into
account.)

Error in dialog file "filename.dcl", line n

Your DCL file contains the name of a tile unknown to progeCAD. Check the spelling. In this
specific example, ok_only was prefixed by a colon (:), which is incorrect for prebuilt tiles.

Incorrect: : ok_only ;
Correct: ok_only ;

Dialog too large to fit on screen

A tile in the DCL file is creating a dialog box that would not fit your computer’s screen. This can
happen when the edit_edith, width, or height attributes are too large.

○ ○

chapter 10 introduction to dclintroduction to dclintroduction to dclintroduction to dclintroduction to dcl 185

Additional Resources

In addition to the information provided by this ebook, you may wish to refer to other DCL
references. These include:

• AfraLisp at www.afralisp.net/lisp/dialog1.htm has lots of tutorials on programming
progeCAD, including these DCL topics:

DCL Primer - Download
Dialog Box Layout
Dialogue Boxes Step by Step
Dialogue Boxe in Action
Nesting and Hiding Dialogues
Hiding Dialogues Revisited
AutoLisp Message Box
AutoLisp Input Box
Referencing DCL Files
AutoLISP Functions for Dialog Control Language
Functional Synopsis of DCL Files
DCL Attributes
Dialogue Box Default Data
DCL Model
DCL Progress Bar
Attributes and Dialogue Boxes
DCL without the DCL File
Entering Edit Boxes

• Jeffery Sanders has his “The AutoLisp Tutorial - DCL: Dialog Control Language” tutorials
at www.jefferypsanders.com/autolisp_DCL.html. Topics include:

Part 1 - Buttons
Part 2 - Edit_Box
Part 3 - List_Box
Part 4 - PopUp_List
Part 5 - Radio_Buttons
Part 6 - Text and Toggle
Part 7 - Putting it all together

• The AutoLISP Exchange presents “Getting Started with Dcl Dialogs” tutorials and several
DCL utility programs at web2.airmail.net/terrycad/Tutorials/MyDialogs.htm. The tutorial
topics include:

Tutorial Overview
Download Files
Introduction to AutoLISP
Introduction to Dialogs
My Dialogs Menu
Questions & Comments

The utility programs are:
Dcl Calcs View Dcl
Show Icons Get Icon
Get Buttons

Additional utilities are listed at web2.airmail.net/terrycad/, such as GetVectors for creat-
ing images for dialog boxes from CAD entities.

○ ○

186 tailoring progeCAD

dCL allows you to create the these elements in dialog boxes: buttons, popup lists, text edit
boxes, radio buttons, image buttons, sliders, list boxes, and toggles.

These elements are called tiles, and can be clustered together as dialog boxes, boxed columns,
boxed radio columns, radio columns, boxed radio rows, radio rows, boxed rows, rows, and
columns. To make dialog boxes prettier and show graphical information, you can add these
elements: images, spacer 0, text, spacer 1, and spacer.

The base.dcl file defines numerous basic tiles, such as the OK button, so that you don’t need
to write them from scratch. This file is reproduced in full later in this chapter.
Each tile works with one or more attributes. Attributes specify the look of the tile and how it
works. For instance, the label tile specifies the text that appears on buttons. A special attribute,
called “key,” allows LISP code to communicate back to the dialog box and make changes, such
as changing the text displayed by the dialog box’s title bar.

This chapter describes every tile and its associated attributes, as well as the LISP functions that
are specific to dialog boxes.

12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567

In This Chapter

• Alphabetical summary of DCL tiles • Tile reference
• Alphabetical summary of DCL attributes • Ourbase.dcl

TIP DCL is under development in progeCAD and all functions described in this chapter do
not necessarily operate as may be expected.

C • H • A • P • T • E • R 11

DCL Reference

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 187

12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567

Alphabetical Summary of DCL Tiles

boxed_column Draws a rectangle around a vertical column of tiles.
boxed_radio_column Draws a rectangle around a vertical column of radio tiles.
boxed_radio_row Draws a rectangle around a horizontal row of radio tiles.
boxed_row Draws a rectangle around a horizontal row of tiles.
button Displays a button with text.
column Creates a column of tiles.
dialog Creates a dialog box.
default_dcl_settings Sets the level of debugging.
edit_box Displays a text edit box.
image Displays a static image.
image_button Displays a button with an image.
list_box Displays a list.
paragraph Concatenates text tiles into vertical paragraphs.
popup_list Displays a droplist.
radio_button Displays a round radio button.
radio_column Creates a column of radio buttons.
radio_row Creates a row of radio buttons.
row Creates a row of tiles.
slider Displays a vertical or horizontal slider bar.
spacer Inserts a rectangular space.
spacer_0 Inserts variable-width space.
spacer_1 Inserts narrow space.
text Displays static text.
text_part Contains piece of text.
toggle Displays a square checkbox.

○ ○

188 tailoring progeCAD

12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567

Alphabetical Summary of DCL Attributes

action LISP action expression.
alignment Horizontal or vertical position in a cluster.
allow_accept Activates the is_default attrbute when tile is selected.
aspect_ratio Aspect ratio of an image.
audit_level Specifies the level of debugging.
big_increment Incremental distance to move.
children_alignment Alignment of a cluster’s children.
children_fixed_height Height of a cluster’s children doesn’t grow during layout.
children_fixed_width Width of a cluster’s children doesn’t grow during layout.
color Background (fill) color of an image.
edit_limit Maximum number of characters that can be entered.
edit_width Width of the input field of the tile.
fixed_height Prevents height from shrinking.
fixed_width Prevents width from shrinking.
fixed_width_font Displays text in a fixed pitch font.
height Height of the tile.
initial_focus Key of the tile with initial focus.
is_bold Displays as bold.
is_cancel Reacts to the cancel key (Esc).
is_default Reacts to the accept key (Enter).
is_enabled Tile is initially enabled.
is_tab_stop Tile is a tab stop.
key Tile name used by the application.
label Displayed label of the tile.
layout Whether the slider is horizontal or vertical.
list Initial values to display in list.
max_value Maximum value of a slider.
min_value Minimum value of a slider.
mnemonic Mnemonic character for the tile.
multiple_select List box allows multiple items to be selected.
password_char Masks characters entered in edit_box.
small_increment Incremental distance to move.
tab_truncate Truncates text longer larger than the associated tab stop.
tabs Tab stops for list display.
value Tile’s initial value.
width Width of the tile.

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 189

Tile Reference

This reference lists DCL’s tiles and attributes in order of importance, as follows:

Dialog

Button
Ok_Only
Ok_Cancel
Ok_Cancel_Help
Ok_Cancel_Help_Errtile
Ok_Cancel_Help_Info

Radio_Button
Toggle
Image_Button
Edit_Box
List_Box
Popup_list
Slider

Text
Text_Part
Concatenation
Paragraph
Errtile

Spacer
Spacer_0
Spacer_1
Image

Column
Row

Boxed_Column
Boxed_Row
Radio_Column
Radio_Row
Boxed_Radio_Column
Boxed_Radio_Row

The default value of attributes is shown in boldface. For example,

alignment = left left left left left | right | centered;

means that “left” is the default for the Alignment attribute.

○ ○

190 tailoring progeCAD

Dialog

The dialog tile defines dialog boxes.

Label

name : dialog dialog dialog dialog dialog {
label = "text";
value = "text";
initial_focus = "key";

}

Name

The name attribute identifies dialog boxes by name. This allows you to have all dialog boxes in
a single DCL file. The LISP routine that accompanies the DCL file uses the load_dialog func-
tion to load the filename.dcl file, and then uses new_dialog to locate the specific dialog box,
as follows:

(setq dlg-id (load_dialogload_dialogload_dialogload_dialogload_dialog "c:\\filename"))
(new_dialognew_dialognew_dialognew_dialognew_dialog "name" dlg-id)

TIP The dlg-id variable holds the system-assigned identifier for the DCL file. This is
typically a number, such as 30.

If the number has a negative value, such as -1, then the DCL file failed to load
correctly. You can use this number to generate error reports.

Label

The label attribute displays text on the dialog box’s title bar, such as:

label = "Dialog Box";

The value attribute is nearly the same, because it also displays text on the title bar. The differ-
ence is that you can use the LISP set_value function to later change the title.

TIP You can change the dialog box’s title when the accompanying LISP routine is run.
This is useful, for example, with a file dialog box whose title should reflect the extension of
the file extension being accessed.

To change the text, use the (set_tile key value) function, which changes the value
of the tile specified by key.

The problem is that progeCAD cannot widen the dialog box to accommodate a
longer title. To avoid cutting off some of the value text, specify a long title with label.

Initial Focus

The initial_focus attribute indicates which button or other tile gets the focus. “Focus” refers
to the tile that is highlighted, the one that would be activated when you press the Enter key.

Dotted box indicates focus

Usually, the focus is set to the OK button, or to the tile users are likely to acesss the most.

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 191

Key

The value of focus is the name of the key tied to the tile. For example, when the key of the OK
button is “okButton,” then you enter the following:

initial_focus = "okButton";

Exiting Dialog Boxes

Every dialog box must have at least an OK button, so that users can exit the dialog box. You can
use predefined buttons to give your dialog boxes the same look as those of progeCAD-designed
dialog boxes. These are called “subassemblies,” and are found in base.dcl.

For instance, to include the standardized button, use the ok_only subassembly like
this:

name : dialog {
label = "Dialog Box";
ok_only;ok_only;ok_only;ok_only;ok_only;

}

Notice that subassemblies are not prefixed by the : character. (If progeCAD complains about
the ok_only subassembly, then you need to load the base.dcl file with the following bit of code:

Command: (load_dialog "base.dcl")(load_dialog "base.dcl")(load_dialog "base.dcl")(load_dialog "base.dcl")(load_dialog "base.dcl")

Both OK and Cancel exit the dialog box, but they have different meanings:

• OK records changes made by users.

• Cancel discards the changes.

After the dialog box is exited, progeCAD sets the read-only DiaStat system variable (short for
“dailog box status”) to one of the following values:

DiaStat Meaning

0 User clicked Cancel to exit dialog box.
1 User clicked OK to exit dialog box.

At the right end of the dialog box’s title bar is an x button. It is equivalent to Cancel, and users
can use it in place of Cancel. However, DCL was developed before Windows added the x button
to all dialog boxes, so progeCAD does not recognize that leaving out Cancel is now valid when
the OK button is also missing.

If the dialog box is tight on space, you can leave out the Cancel button, and let users use the x
button; just remember to include the OK button.

○ ○

192 tailoring progeCAD

Button

The button tile defines buttons with text labels.

Label

Mnemonic

Width

Height

: button button button button button {
label = "text";
mnemonic = "char";

action = "(LISP function)";
key = "text";

is_cancel = false false false false false | true;
is_default = false false false false false | true;
is_enabled= true true true true true | false;
is_tab_stop= true true true true true | false;

width = number;
height = number;
fixed_height = false false false false false | true;
fixed_width = false false false false false | true;

alignment = centered centered centered centered centered | left | right;
}

Label

The label attribute places text on the button tile, such as:

label = "Button";

Mnemonic

The mnemonic attribute underlines a character. Users can then access the button by press-
ing Alt and the letter. For example, the following code underlines the letter “B” in Button:

mnemonic = "B";

TIPS As an alternative to the mnemonic attribute, you can prefix the character with & in
the label attribute, like this:

label = "&Button";

Make sure that mnemonic characters are not used more than once in each dialog box. For
instance, don’t use B twice in the same dialog box.

Action

The action attribute contains LISP code that gets executed when users click the button. (This
is called a “callback.”) For example, the code could set the value of system variables, like this:

action = "(setvar "highlight" 0)"

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 193

TIPS You cannot, unfortunately, use the LISP command function to execute progeCAD
commands with the action attribute.

You can use the LISP action_tile function to override the action specified by the action
attribute.

Key

The key attribute gives an identifying tag to the button.

Is_Cancel

The is_cancel=true attribute specifies that this button is selected when users press the Esc
key.

is_cancel = true;

Usually, the dialog box is exited right away when users press Esc. In addition, progeCAD sets
the value of the DiaStat system variable to 0. However, if the button has an action attribute,
then the associated LISP expression is executed before the dialog box is exited.

TIPS Only one button in the dialog box can be assigned is_cancel=true.

There is no point in having is_cancel=false, except for debugging perhaps.

Is_Default

The is_default=true attribute specifies that this button is selected when users press the Enter
key — unless another button has the focus.

is_default true;

Is_Enable

The is_enable=false attribute allows you to gray-out buttons. This tells users that the but-
tons are unavailable, usually because some other condition is not satisfied, such as the drawing
is in paper space instead of model space.

is_enabled= false;

Grayed-out button

When set to true, the buttons become available. To change the status from false to true, use the
mode_tile function in LISP.

Is_Tab_Stop

The is_tab_stop attribute allows the button to receive focus when users press the Tab key.
Pressing Tab is a popular way for power users to quickly move through the controls of dialog
boxes; if the mouse is busted, then that’s the only way to navigate a dialog box. Normally, there
is no reason not to allow a button to be a tab stop, and since the default is true, there’s not
much need for this attribute.

is_tab_stop= false;

○ ○

194 tailoring progeCAD

Width & Height

The width and height attributes specify the minimum size of buttons. You can use integers
(such as 5) or real numbers (such as 5.5).

Usually progeCAD determines the correct size on its own, so you don’t need to specify these
attributes. But if you need to create extra large buttons, such as the one illustrated below, then
go right ahead!

width = 30;
height = 5;

The units are in characters, such as 30 characters wide and 5 lines tall. progeCAD determines
the size of character based on an average calculated of all letters in the 8-pt “MS San Serif” font
used for text in dialog boxes. The font cannot be changed.

In the table below, the black areas indicate size of tiles based on a variety of values for the
Width and Height attributes:

Size Example

Height = 1

Height = 2

Height = 3

Width = 30

Width = 40

Width = 80

Fixed_Height & Fixed_Width

The fixed_height and fixed_width attributes prevent progeCAD from expanding buttons
to fill the available space. Recall that the height and width attributes specify only the mini-
mum size. Adding these two attributes makes them also the maximum size.

fixed_height = true;
fixed_width = true;

TIP Use the image_button tile for buttons with colors and images.

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 195

Alignment

The alignment attribute is supposed to shift text left or right on the button. In practice, how-
ever, I find this attribute has no effect; the text is always centered.

Autodesk notes that alignment cannot be specified along the long axis of a cluster of tiles. The
first and last tiles align with either end of the row (or column), while the inner tiles are distrib-
uted evenly between them. You can change the distribution with the spacer_0 tile.

Prefabricated Button Assemblies

progeCAD provides the following pre-fabricated button assemblies in ourbase.dcl. This file is
described in detail later in this chapter.

Ok_Only

The ok_only tile defines an OK button.

ok_onlyok_onlyok_onlyok_onlyok_only;

Ok_Cancel

The ok_cancel tile defines a horizontal row of OK and Cancel buttons.

ok_cancelok_cancelok_cancelok_cancelok_cancel;

Ok_Cancel_Help

The ok_cancel tile defines a horizontal row of OK, Cancel, and Help buttons.

ok_cancel_helpok_cancel_helpok_cancel_helpok_cancel_helpok_cancel_help;

Ok_Cancel_Help_Errtile

The ok_cancel_help_errotile tile defines a horizontal row of OK, Cancel, and Help but-
tons, and space below for an error message.

ok_cancel_help_errtileok_cancel_help_errtileok_cancel_help_errtileok_cancel_help_errtileok_cancel_help_errtile;

Ok_Cancel_Help_Info

The ok_cancel_help_info tile defines a horizontal row of OK, Cancel, Help, and Info but-
tons. The Info button can be used to display a second dialog box with additional information.

ok_cancel_help_infook_cancel_help_infook_cancel_help_infook_cancel_help_infook_cancel_help_info;

○ ○

196 tailoring progeCAD

Radio_Button

The radio_button tile defines radio buttons. These buttons are used when only one choice
can be made from a selection, such as the top, left, or right isoplane. When selected, the radio
button shows a black dot; when off, the round button is blank.

If the dialog box has more than one radio button in a cluster, only one can be on at a time.
When users select a radio button, the other one turns off automatically. To have more than one
radio button on at a time, segregate them into clusters with the radio_row or radio_column
tiles.

Label
Value = 0

: radio_buttonradio_buttonradio_buttonradio_buttonradio_button {
action = "(LISP function)";
key = "text";

label = "text";
mnemonic = "char";
value = "0" | "1";

is_enabled= true true true true true | false;
is_tab_stop= true true true true true | false;

height = number;
width = number;
fixed_height = false false false false false | true;
fixed_width = false false false false false | true;

alignment = left left left left left | right | centered;
}

Label

The label attribute describes the purpose of the radio button to users. The text is always to the
right of the button.

Value

The value attribute determines whether the radio button is initially on or off:

value = "1";

Value MeaningExample

0 Off

1 On

The other attributes have the same meaning as for the button tile.

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 197

Multiple Radio Buttons

When more than one radio button has value set to 1, then progeCAD turns on only the last
one. as illustrated below.

Left: Four radio buttons in one dialog box.
Right: Four radio buttons segregated into two vertical columns.

If you need more than one radio button to be turned on, then consider using the toggle tile for
check boxes. Alternatively, segregate radio buttons with the radio_column tile, as illustrated
above, and shown in DCL code below:

: radio_column radio_column radio_column radio_column radio_column {
: radio_button { label = "Radio Button 1"; value = "1"; }
: radio_button { label = "Radio Button 2"; value = "1"; }

}
: radio_columnradio_columnradio_columnradio_columnradio_column {

: radio_button { label = "Radio Button 3"; value = "1"; }
: radio_button { label = "Radio Button 4"; value = "1"; }

}

It’s not clear that the four buttons are segregated into two section, so it makes more sense to
use the boxed_radio_column tile, which separates them visually.

By default, progeCAD stacks radio buttons vertically, as illustrated above. Use the radio_row
tile to force the radio buttons in a horizontal line — although this format is more difficult for
users to navigate.

More on boxed_ and radio_ tiles later in this chapter.

○ ○

198 tailoring progeCAD

Toggle

The toggle tile defines check boxes. Check boxes are employed so users can select more than
one choice. (Use radio buttons to limit options to a single choice.)

Label

Value = 0

: toggle toggle toggle toggle toggle {
action = "(LISP function)";
key = "text";

label = "text";
mnemonic = "char";
value = "0" "0" "0" "0" "0" | "1";

is_enabled= true true true true true | false;
is_tab_stop= true true true true true | false;

height = number;
width = number;
fixed_height = false false false false false | true;
fixed_width = false false false false false | true;

alignment = left left left left left | right | centered;
}

Label

The label attribute describes to users the purpose of the check box. The text is always to the
right of the button.

Value

The value attribute determines whether the toggle is initially on or off:

value = "1";

Value MeaningExample

0 Off

1 On

Other Attributes

The other attributes have the same meaning as for the radio tile.

You can use the boxed_row and boxed_column tiles to segregate toggles into groups.

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 199

Image_Button

The image_button tile defines a button tile with an image. This can be the most difficult tile
to program, because some situations require you to correlate x,y coordinates from users’ picks
with LISP code.

Color Height

Width

: image_buttonimage_buttonimage_buttonimage_buttonimage_button {
action = "(LISP function)";
key = "text";

aspect_ratio = number;
mnemonic = "char";
color = colornumber;

allow_accept = false false false false false | true;
is_enabled= true true true true true | false;
is_tab_stop= true true true true true | false;

height = number;
width = number;
fixed_height = false false false false false | true;
fixed_width = false false false false false | true;

alignment = left left left left left | right | centered;
}

Key

The key attribute identifies the image tile to the accompanying LISP code, so that the slide
image can be placed in the dialog box.

key = "image1";

Images of hatch patterns, fonts, and so on are placed on the image tile through the accompany-
ing LISP code’s callback function (set_tile) and the key attribute. There are two sources of
image you can use:

• SLD slide files, which are created ahead of time with progeCAD’s MSlide command,
and then placed with LISP’s slide_image function.

• Vector lines, which are drawn on-the-fly by LISP’s vector_image function.

Aspect_Ratio, Height, & Width

You use any two of these three attributes. The aspect_ratio attribute specifies the ratio be-
tween the height and width of the image tile, and must be used with either the height or the
width attribute — but not both. Similarly, if you use the height and width attributes, you
cannot use the aspect_ratio attribute. Examples:

aspect_ratio = 1.333;
height = 3;

○ ○

200 tailoring progeCAD

Or...

aspect_ratio = 1.333;
width = 4;

Or...

height = 3;
width = 4;

Color

The color attributes specifies the background color of image tiles. You can use a color name or
number; default = 7 (white or black).

mber Color Name Meaning

0 black ACI color 0 (black or white) 1

1 red ACI 2 color 1
2 yellow ACI color 2
3 green ACI color 3
4 cyan ACI color 4
5 blue ACI color 5
6 magenta ACI color 6
7 white ACI color 7 (white or black) 1

-1graphics_foreground Current default color of entities (usually ACI 7). 1

-2graphics_background Current background color of progeCAD’s graphics screen.
-3blue
-4black
-5gray
-6black
-7red
-15 dialog_background Current color of dialog box background (usually gray).
-16 dialog_foreground Current color of dialog box text (usually black).
-18 dialog_line Current color of dialog box lines (usually black).

Notes:
1 The color is white when the background color is dark, but black when the background is light.
2 ACI is short for “AutoCAD Color Index,” and refers to the 256 color numbers.

 Autodesk notes that “if your image tile is blank when you first display it, try changing its color
to graphics_background or graphics_foreground.”

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 201

Edit_Box

The edit_box tile defines a horizontal tile for entering text.

Label

Edit width

Height
Mnemonic

Value

Width

: edit_box edit_box edit_box edit_box edit_box {
label = "text";
mnemonic = "char";

action = "(LISP function)";
key = "text";

value = "text";
fixed_width_font = false false false false false | true;
password_char = "char";
edit_limit = 1-256;
edit_width = 1-256;

allow_accept = false false false false false | true;
is_enabled= true true true true true | false;
is_tab_stop= true true true true true | false;

height = number;
width = number;
fixed_height = false false false false false | true;
fixed_width = false false false false false | true;

alignment = left left left left left | right | centered;
}

Label

The label attribute displays text that prompts users as to the text or numbers to enter. The
label is always positioned to the left of the text entry box.

label = "Edit Box";

Mnemonic

The mnemonic attribute provides the Alt-shortcut keystroke for the label. Alternatively, pre-
fix a letter in the label with &.

label = "&Edit Box";
mnemonic = "E";

Value

The value attribute displays default text in the edit box, such as “text” in the figure above. For
blank, leave out value, or set use value = "".

value = "text";

○ ○

202 tailoring progeCAD

Password_Char

When the edit box is used for entering passwords, then you can specify a character with the
password_char attribute that substitutes for user-entered text, such as “*”.

password_char = "*";

Fixed_Width_Font

The fixed_width_font attribute determines whether the edit box uses a fixed width font;
more precisely, the monospaced FixedSys font included with Windows. Only the user text is
affected by this attribute; the dialog box text keeps its font.

fixed_width_font = true;

Edit_Limit

The edit_limit attribute limits the maximum number of characters users can type in. For
text, the limit usually doesn’t matter; the default is 132. You might want to expand the limit to
its maximum of 256, or reduce it. For example, you may want to limit entry to a single charac-
ter or digit.

edit_limit = 256;

Edit_Width

The edit_width attribute determines the size of the edit box; it can be an integer or a real
number. Users can enter more characters than this number, up to the maximum determined
by edit_limit. The default width is whatever fits in the dialog box; specifying edit_width =
0 has the same effect. In many cases, the default width is about 16 characters.

edit_width = 186;

I have found that the maximum value of 256 overwhelms progeCAD; it complains that the
resulting dialog box would not fit my computer’s 1280x1024-resolution screen. The maximum
turned out to be 186 in my case.

Other Attributes

The remaining attributes have the same meaning as for other tiles.

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 203

List_Box

The list_box tile defines tiles that list text items; users can select one or more of them.

Label

Height

Mnemonic

Width

List

Value

: list_boxlist_boxlist_boxlist_boxlist_box {
action = "(LISP function)";
key = "text";

label = "text";
mnemonic= "char";

list = "text 1\ntext 2\ntext 3";
value = "0""0""0""0""0";
multiple_select = true true true true true | false;
tabs = "number number number";
tab_truncate = false false false false false | true;
fixed_width_font = false false false false false | true;

allow_accept = false false false false false | true;
is_enabled= true true true true true | false;
is_tab_stop= true true true true true | false;

height = number;
width = number;
fixed_height = false false false false false | true;
fixed_width = false false false false false | true;

alignment = left left left left left | right | centered;
}

List

The list attribute specifies the text in the list box tile. Each item is separated by the \n meta-
character, which means “new line.” When the list becomes too long for the list box, progeCAD
automatically adds a scroll bar, as illustrated later.

list = "text 1\ntext 2\ntext 3";

Tabs

You can use the tabs attribute to line up text in list boxes. The tabs are specified in characters,
such as at the 5th, 10th, 15th, and 20th character.

tabs = "5 10 15 20";

To specify tabs in the text of the list attribute, use the \t metacharacter (short for “tab”). The
following DCL code and figure illustrate the use of \n and \t:

○ ○

204 tailoring progeCAD

list = " tab1\t\t\t\t\tline 1\n\n\n\n\nline 2\t\t\t\t\ttab 4\n\n\n\n\nmore text\t\t\t\t\tline 3";

Tab_Truncate

The tab_truncate attribute determines whether text is truncated when longer than the asso-
ciated tab stop. Default is false, which means it is not truncated.

tab_truncate = true;

Fixed_Width_Font

The fixed_width_font attribute lets the list use the Windows FixedSys font, a monospace
font (a.k.a. fixed width font), where each character takes up the same width. This can be useful
when you need columns of text to line up; otherwise, fixed width text is not useful, because it
makes the dialog box wider.

fixed_width_font = true;

In the figure below , both dialog boxes have width = 30. Notice that the fixed width font takes
up more space.

Value

The value attribute specifies which item is initially highlighted. The default, 0, means the first
item is highlighted. If you want more than one item highlighted, then separate the digits with
spaces. The following examples highlights items #2 and #3:

value = "1 2";

Multiple_Select

The multiple_select attribute determines whether users can select more than one item from
the list. Users need to hold down the Ctrl key to select more than one item, or the Shift key to
select a sequential range of items.

multiple_select = false;

When this attribute is set to false, then the value attribute is restricted to the first digit. For
example, value = "1 2" becomes "1".

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 205

Left: Selecting random items with the Ctrl key held down.
Right: Selecting sequential items with the Shift key held down.

Height

The height attribute determines the height of the list box in lines. For example, height = 7
means that the list box is seven lines tall, but has room for only six items, because the seventh
line is used for the label.

Line 1

Height = 7
(in lines) Lines 2 - 7

When height is set to 0 or is not included, then the list box is stretched to accommodate all
items in the list, if possible.

Width

The width attribute determines the width of the list box. Width is measured in characters.

Other Attributes

The remaining attributes operate identically to those in other tiles. The list box illustrated
below was created using the following DCL code:

Height = 7

Value = "1 3"
Scroll bar added by
AutoCAD.

: list_box {
label = "List box:";
mnemonic= "b";
list = "text 1\ntext 2\ntext 3\ntext 4\ntext 5\ntext 6\ntext 7";
value = "1 3";
multiple_select = true;
height = 7;

}

○ ○

206 tailoring progeCAD

Popup_List

The popup_list tile displays a droplist. Despite the name, this tile drops down; it doesn’t pop
up.

Label
Mnemonic

List

: popup_listpopup_listpopup_listpopup_listpopup_list {
action = "(LISP function)";
key = "text";

label = "text";
mnemonic = "char";

list = "text 1\ntext 2\ntext 3";
tabs = "number number number";
tab_truncate = false false false false false | true;
value = "text";
fixed_width_font = false false false false false | true;
edit_width = 1-256;

is_enabled= true true true true true | false;
is_tab_stop= true true true true true | false;

height = number;
width = number;
fixed_height = false false false false false | true;
fixed_width = false false false false false | true;

alignment = left left left left left | right | centered;
}

Label

The label attribute provides the prompt text for the droplist.

label = "Popup list: ";

Mnemonic

As with other tiles, you can specify the Alt+shortcut with the & prefix, or else use the mne-
monic attribute to indicate the shortcut keystroke.

label = "&Popup list: ";
mnemonic = "P";

List

The list attribute specifies the text in the droplist tile. Each item is separated by the \n meta-
character. When the list becomes too long for the droplist, progeCAD automatically adds a
scroll bar.

list = "text 1\n\n\n\n\ntext 2\n\n\n\n\ntext 3";

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 207

Tabs

If you need text to line up in columns, use the tabs attribute to specify the tab spacing.

tabs = "10 20 30";

Then use the \t metacharacter to specify where the tabs occur in the list attribute.

list = "text 1\t\t\t\t\ttext 2\t\t\t\t\ttext 3";

Tab_Truncate

The tab_truncate attribute determines whether text is truncated when longer than the associ-
ated tab stop. Default is false, which means it is not truncated.

tab_truncate = true;

Value

The value attribute specifies which item is initially selected. The first item is #0 (the default).
Use value = "" for no initial selection.

value = "1";

Value = 1
Value = 0

Value = 2

Other Attributes

The other attributes are identical to those described for other tiles.

○ ○

208 tailoring progeCAD

Slider

The slider tile defines vertical and horizontal sliders.

Small_increment

Min_value Max_value

Big_increment

: slider slider slider slider slider {
action = "(LISP function)";
key = "text";

label = "text";
mnemonic = "char";

layout = horizontal horizontal horizontal horizontal horizontal | vertical;
max_value = integer;
min_value = integer;
big_increment = integer;
small_increment = integer;
value = "text";

height = number;
width = number;
fixed_height = false false false false false | true;
fixed_width = false false false false false | true;

alignment = left left left left left | right | centered;
}

Label & Mnemonic

The label and mnemonic attributes seem to have no effect; they do not appear with the
slider. The workaround is to use the boxed_row attribute to give the slider its label, as illus-
trated below:

: boxed_row {: boxed_row {: boxed_row {: boxed_row {: boxed_row {
label = "Slider: "; mnemonic = "S";label = "Slider: "; mnemonic = "S";label = "Slider: "; mnemonic = "S";label = "Slider: "; mnemonic = "S";label = "Slider: "; mnemonic = "S";
: slider {

max_value = 100;
min_value = -100;
big_increment = 10;
small_increment = 1;
value = "0";

}
}}}}}

In addition to not labeling the slider, this tile provides no way to indicate to users the meaning
of the minimum and maximum values. The workaround is to add a row of text underneath the
slider, as illustrated here:

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 209

Notice that you need to use the spacer tile to position the three pieces of text appropriately:

: row row row row row {
: text text text text text { value = "-100"; alignment = left; }
: spacer {width = 11; }
: text text text text text { value = "0"; alignment = centered; }
: spacer {width = 8; }
: text text text text text { value = "100"; alignment = right; }

}

Layout

The layout layout layout layout layout attribute determines if the slider is horizontal (default) or vertical, as illustrated below.
layout = vertical;

Min_value

Max_value

Horizontal sliders don’t need to have a height or width attribute, because the default values are
just fine. Vertical sliders, need the height specified, otherwise they end up with no height, as
illustrated below. I suggest setting height = 10.

Using both a horizontal and vertical slider lets you create scroll bars for panning images.

Max_Value

The max_value attribute specifies the upper limit of the scroll bar; default = 10000. It limits
the maximum value when the slider is at the right (or top) end of the bar. You can use any
integer between -32768 and 32767. If you need larger values, then use LISP code to multiply
them.

max_value = 32767;

Min_value Max_value

Min_Value

The min_value attribute specifies the lower limit of the scroll bar; default = 0. It limits the
minimum value when the slider is at the left (or bottom) end. You can use any integer between
-32768 and 32767. To reverse the action of the scroll bar, use a larger value for min_value
and a smaller one for max_value.

min_value = -32768;

○ ○

210 tailoring progeCAD

Big_Increment

The big_increment attribute specifies the value of clicking the bar on either side of the slider.
The default is 0.1 of the range between max_value and min_value. You can use any integer
between the values of those two attributes.

Click here for Big_increment

big_increment = 100;

Small_Increment

The small_increment attribute specifies the value of clicking the arrows. The default is 0.01
of the range between max_value and min_value.

Click here... ...or here for Small_increment

small_increment = 1;

Value

The value attribute specifies the slider’s initial position. Even though the value is an integer, it
must be enclosed in quotation marks. The default is the same as min_value.

value = "1000";

Height

The height attribute specifies the size of vertical sliders; it has no effect on horizontal sliders.
Height is measured in lines (of text). You have to specify a height for vertical sliders to avoid
the problem described on the previous page.

height = 10;

Width

The width attribute specifies the size of horizontal sliders; it has no effect on vertical sliders.
Width is measured in character (of text). You don’t have to specify a width for horizontal
sliders, because the default is satisfactory.

width = 40;

Fixed_Height & Fixed Width

The fixed_height and fixed_width attributes prevent DCL from expanding the slider to fit
available space in the dialog box. Default in both cases is false, which means the height and
width are not fixed. I suspect these attributes actually have no effect.

fixed_height = true;
fixed_width = true;

Alignment

The alignment attribute is supposed to shift the slider bar left or right, but I don’t see that this
attribute has any effect. The default is centered.

alignment = right;

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 211

Text

The text tile displays text in the dialog box. The text is static when specified in the DCL file, or
dynamic when specified in the LSP file.

Label

: text text text text text {
label = "text";
is_bold = false false false false false | true;

value = "text";
key = "text";

height = number;
width = number;
fixed_height = false false false false false | true;
fixed_width = false false false false false | true;

alignment = left left left left left | right | centered;
}

Label

The label attribute specifies the text displayed by the dialog box. Autodesk recommends using
this attribute for static text — text that doesn’t change.

label = "Text";

Value

The value attribute also specifies text displayed by dialog box. Autodesk recommends you use
this attribute for dynamic text — text that’s specified by the accompanying LISP code. For
dynamic text, value is set to null, as shown here:

value = "";

Make sure you include the width attribute so that there is sufficient space for the text mes-
sage. progeCAD does not wrap text that is too long for the dialog box; text is truncated. And
include the key attribute so that the LISP code can identify the text tile.

: text {
value value value value value = "";
key key key key key = "textField1";
width width width width width = 40;

}

To display error messages or feedback on users’ choices, use the set_tile function to assign
text to the tile in the LISP code, like this:

(set_tileset_tileset_tileset_tileset_tile "textField1" "Error: Cannot set that value.")

The combination of DCL and LSP code results in the following display by the dialog box:

○ ○

212 tailoring progeCAD

TIP If both label and value are used in the text tile code, however, then value’s text is
displayed by the dialog box.

is_bold

The is_bold attribute is supposed to make the text boldface, but I can see no difference.

is_bold = true;

height & width

The height and width attributes size the text tile. Height starts measuring from the top of the text, and is measured in lines.
Width starts from the left end of the text, and is measured in characters.

height = 5;
width = 40;

Height = 5
(in lines)

Width = 40
(in characters)

Fixed_Height & Fixed Width

The fixed_height and fixed_width attributes prevent DCL from expanding the text area to
fit available space in the dialog box. Default in both cases is false, which means the height and
width are not fixed.

fixed_height = true;
fixed_width = true;

Alignment

The alignment attribute shifts the text to the left, right, or center of its width.

alignment = right;

Text_Part

The text_part tile displays text without margins, the blank space around text. (Well, it’s sup-
posed to, but as the example shows below, rather large gaps can occur.) It is meant to combine
several pieces of text into one line, when used with the concatenation tile.

: text_parttext_parttext_parttext_parttext_part {
label = "text";

}

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 213

Concatenation

The concatenation tile strings together two or more text and/or text_part tiles.

: concatenation concatenation concatenation concatenation concatenation {
: text_part { label = "A small step"; }
: text_part { label = "for a man."; }

}

Paragraph

The paragraph tile stacks lines of text, as illustrated below.

: paragraph paragraph paragraph paragraph paragraph {
: text_part { label = "A small step"; }
: text_part { label = "for a man."; }

}

Errtile

The errtile tile defines a horizontal space for reporting error messages. It appears at the bot-
tom of dialog boxes, and its key is “error.”

errtileerrtileerrtileerrtileerrtile;

You use it in conjunction with the set_tile function in the accompanying LISP code.

(set_tileset_tileset_tileset_tileset_tile "error" "Error: Cannot set that value.")

○ ○

214 tailoring progeCAD

Spacer

The spacer tile defines a vertical and/or horizontal space.

Height

Width

: spacer spacer spacer spacer spacer {
height = number;
width = number;
fixed_height = false false false false false | true;
fixed_width = false false false false false | true;

alignment = left left left left left | right | centered;
}

Spacer_0

The spacer_0 tile defines a variable-width space that spaces itself automatically.

spacer_0spacer_0spacer_0spacer_0spacer_0;

Spacer_1

The spacer_1 tile defines a very narrow space.

spacer_1spacer_1spacer_1spacer_1spacer_1;

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 215

Image

The image tile defines a rectangular area for displaying an image, such as of a text font sample,
hatch pattern sample, color sample, or icons representing drawing and editing commands.
The easiest is the color sample, as illustrated below, because it is specified by the color at-
tribute.

Images of hatch patterns, fonts, and so on are placed on the image tile through the accompany-
ing LISP code’s callback function (set_tile) and the key attribute. There are two sources of
image you can use:

• SLD slide files, which are created ahead of time with progeCAD’s MSlide command,
and then placed with LISP’s slide_image function.

• Vector lines, which are drawn on-the-fly by LISP’s vector_image function.

 : image image image image image {
action = "(LISP function)";
key = "text";

value = "text";
mnemonic = "char";
color = colornumber;

aspect_ratio = number;
height = number;
width = number;

is_enabled= true true true true true | false;
is_tab_stop= true true true true true | false;
fixed_height = false false false false false | true;
fixed_width = false false false false false | true;

alignment = left left left left left | right | centered;
}

Key

The key attribute identifies the image tile to the accompanying LISP code, so that the slide
image can be placed in the dialog box.

key = "image1";

Value and Mnemonic

The value and mnemonic attributes appear to have no effect.

Color

The color attribute defines the color of the image tile. Use the same color numbers as for the
image_button tile. A popular number is -15, which displays the same color as that of the
dialog box’s background — usually gray.

color = -15;

○ ○

216 tailoring progeCAD

Number Color Name Meaning

0 black ACI color 0 (black or white) 1

1 red ACI 2 color 1
2 yellow ACI color 2
3 green ACI color 3
4 cyan ACI color 4
5 blue ACI color 5
6 magenta ACI color 6
7 white ACI color 7 (white or black) 1

-1graphics_foreground Current default color of entities (usually ACI 7). 1

-2graphics_background Current background color of progeCAD’s graphics screen.
-3blue
-4black
-5gray
-6black
-7red
-15 dialog_background Current color of dialog box background (usually gray).
-16 dialog_foreground Current color of dialog box text (usually black).
-18 dialog_line Current color of dialog box lines (usually black).

Notes:
1 The color is white when the background color is dark, but black when the background is light.
2 ACI is short for “AutoCAD Color Index,” and refers to the 256 color numbers.

Aspect_Ratio, Height, & Width

You use any two of these three attributes. The aspect_ratio attribute specifies the ratio be-
tween the height and width of the image tile, and must be used with either the height or the
width attribute — but not both. Similarly, if you use the height and width attributes, you
cannot use the aspect_ratio attribute. Examples:

aspect_ratio = 1.333;
height = 3;

Or...

aspect_ratio = 1.333;
width = 4;

Or...

height = 3;
width = 4;

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 217

Column

The column tile defines a vertical column of tiles. This tile is not normally needed, because
tiles are stacked vertically by default. You would use it when you want two columns of tiles in
the dialog box.

Label

Width

HeightBox lines
(appear only with label)

: column column column column column {
label = "text";

height = number;
width = number;
fixed_height = false false false false false | true;
fixed_width = false false false false false | true;
children_fixed_height = false false false false false | true;
children_fixed_width = false false false false false | true;

alignment = left left left left left | right | centered;
children_alignment = left left left left left | right | centered;

}

Label

The label attribute provides a title for the column. Curiously, when the label is not used, then
the column is unboxed; when a label is used, the column is boxed — as if it were the
boxed_column tile.

label = "Column";

Height & Width

progeCAD normally sizes the column automatically. You can use the height and width at-
tributes to specify a larger size; height is measured in lines of text, width in characters.

height = 10;
width = 40;

Children_Fixed_Height, Children_Fixed_Width, & Children_Alignment

The children_fixed_height and children_fixed_width attributes fix the height and width
of clustered tiles; these attributes can be overridden by the children’s attributes.

children_fixed_height = true;
children_fixed_width = true;

○ ○

218 tailoring progeCAD

The children_alignment attribute sets the alignment of clustered tiles; this attribute can be
overridden by the children’s alignment attributes.

children_alignment = centered;

Boxed_Column

The boxed_column tile places a box around a column of tiles. It is identical to the column
tile, except that the box appears whether or not the tile has a label. The figure below illustrates
the box without a label.

: boxed_columnboxed_columnboxed_columnboxed_columnboxed_column {
label = "text";

height = number;
width = number;
children_fixed_width = false false false false false | true;
fixed_height = false false false false false | true;
fixed_width = false false false false false | true;
children_fixed_height = false false false false false | true;

alignment = left left left left left | right | centered;
children_alignment = left left left left left | right | centered;

}

Radio-Column & Boxed_Radio_Column

The radio_column and boxed_radio_column tiles define vertical columns for radio but-
tons. The only difference from the boxed_column and column tiles is the addition of the
value attribute, which specifies which radio button is turned on.

: radio_columnradio_columnradio_columnradio_columnradio_column { // or : boxed_radio_columnboxed_radio_columnboxed_radio_columnboxed_radio_columnboxed_radio_column {
label = "text";
value = "number”;

height = number;
width = number;
fixed_height = false false false false false | true;
fixed_width = false false false false false | true;
children_fixed_height = false false false false false | true;
children_fixed_width = false false false false false | true;

alignment = left left left left left | right | centered;
children_alignment = left left left left left | right | centered;

}

Value

The value attribute specifies which radio button is turned on, the first button being #0.

value = "2";

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 219

Row & Boxed_Row

The row and boxed_row tiles define a horizontal row of other tiles, called “children” or
“clustered tiles.” Like columns, including a label to the row tile adds the box; no label, no box.
Otherwise, the two tiles are identical.

Label

Width

Height

: row row row row row { // or : boxed_rowboxed_rowboxed_rowboxed_rowboxed_row {
label = "text";

height = number;
width = number;
fixed_height = false false false false false | true;
fixed_width = false false false false false | true;
children_fixed_height = false false false false false | true;
children_fixed_width = false false false false false | true;

alignment = left left left left left | right | centered;
children_alignment = centered centered centered centered centered | top | bottom;

}

Other Attributes

Attributes are identical to those of the column tile, except that the children_alignment at-
tribute is vertically oriented: top, bottom, or centered.

Radio_Row & Boxed_Radio_Row

The radio_row tile defines a horizontal row of radio buttons.

: radio_rowradio_rowradio_rowradio_rowradio_row { // or : boxed_radio_row boxed_radio_row boxed_radio_row boxed_radio_row boxed_radio_row {
label = "text";
value = "number";

height = number;
width = number;
fixed_height = false false false false false | true;
fixed_width = false false false false false | true;
children_fixed_height = false false false false false | true;
children_fixed_width = false false false false false | true;

alignment = left left left left left | right | centered;
children_alignment = centered centered centered centered centered | top | bottom;

}

Value

The value attribute specifies which radio button is turned on, the first button being #0.

value = "2";

○ ○

220 tailoring progeCAD

base_about : dialog {
 label = "About BASE";
 /*
 : paragraph {
 alignment = left;
 fixed_height = true;
 : text {
 label = "Copyright (c) 1997, Visio Corporation";
 }
 : text {
 label = "All Rights Reserved.";
 }
 : concatenation {

 : text_part {
 label = "Version ";
 }
 : text_part {
 label = "";
 key = "version";
 width = 50;
 }
 }
 }
 : radio_row {

key="row1";
 : radio_button {

 label="ALP01";
 key="alpo1";

 }
 : radio_button {

 key="alpo2";
 label="ALP02";

 }
 : radio_button {

 key="alpo3";
 label="ALP03";

 }
 : radio_button {

 label="ALP04 ";
 key="alpo4";

 }
 }
 spacer_1;

 */
 ok_cancel;
}

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

OurBase.Dcl

The ourbase.dcl file defines common prototypes and subassemblies for use by progeCAD and
user-defined dialogs. This file is found in the C:\Program Files\progeSOFT\progeCAD 2009
Pro ENG\api\dcl folder.

Copyright (c) 1998 by Visio Corporation. All rights reserved.
The Software is subject to the license agreement that accompanies
or is included with the Software, which specifies the permitted
and prohibited uses of the Software. Any unauthorized duplication
or use of Visio Corporation Software, in whole or in part, in print,
or in any other storage and retrieval system is prohibited.
To the maximum extent permitted by applicable law, Visio Corporation
and its suppliers disclaim any and all warranties and conditions,
either express or implied, including, without limitation, implied
warranties of merchantability, fitness for a particular purpose,
title, and non-infringement, and those arising out of usage of trade
or course of dealing, concerning these materials. These materials

are provided "as is" without warranty of any kind.

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 221

LISP Functions for Dialog Boxes

Dialog boxes are designed by DCL files and displayed by LISP routines. The most basic LISP
routine to load, display and unload dialog boxes looks like this:

(defun c:functionName (/ dlg-id)
(setq dlg-id (load_dialogload_dialogload_dialogload_dialogload_dialog "fileName"))
(new_dialog new_dialog new_dialog new_dialog new_dialog "dialogName" dlg-id)
; Insert get_tile, set_tile, action_tile, and other functions here.
(start_dialogstart_dialogstart_dialogstart_dialogstart_dialog)
(unload_dialogunload_dialogunload_dialogunload_dialogunload_dialog dlg-id)

)

The fileName.dcl file specifies the layout of the dialog box. The most basic file looks like this:

dialogName : dialog dialog dialog dialog dialog {
// Insert tiles here.
ok_onlyok_onlyok_onlyok_onlyok_only;

}

This section of the chapter describes the LISP functions that interact with dialog boxes, in the
following order:

load_dialog
new_dialog
start_dialog
done_dialog
term_dialog

get_tile
set_tile
get_attr
mode_tile
action_tile
client_data_tile

start_list
add_list
end_list

start_image
slide_image
fill_image
vector_image
dimx_tile
dimy_tile
end_image

alert
help
acad_helpdlg
acad_colordlg
acad_truecolordlg
initdia

○ ○

222 tailoring progeCAD

12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567

Alphabetical List of LISP Functions
for Dialog Boxes

action_tile Assigns action to be evaluated when user selects dialog box tile.
add_list Adds and modifies strings in current dialog box listbox.
client_data_tile Associates data from an application with a tile in the dialog box.
dimX_tile Returns the x-dimension of the dialog box image tile.
dimY_tile Returns the y-dimension of the dialog box image tile.
done_dialog Terminates the dialog box.
end_image Ends creation of dialog box image tile.
end_list Ends processing of dialog box list box.
fill_image Draws filled rectangles in dialog boxes.
get_attr Retrieves the DCL value of the tile’s attribute.
get_tile Retrieves the value of tile.
load_dialog Loads .dcl files that define dialog boxes.
mode_tile Sets the mode of dialog box tiles.
new_dialog Activates dialog boxes.
set_tile Sets the value of dialog box tiles.
slide_image Displays slides in dialog box image tiles.
start_dialog Displays the current dialog box.
start_image Starts creating images in dialog boxes.
start_list Starts processing lists in dialog boxes.
term_dialog Terminates dialog boxes.
unload_dialog Unloads .dcl files from memory.
vector_image Draws vectors in dialog box image tiles.

Dialog Boxes Displayed by LISP Functions

acad_colordlg Displays the Select Color dialog box with only the Index Color tab.
acad_truecolordlg Displays the Select Color dialog box with all tabs.
alert Displays the alert dialog box with customized warning.
help Displays the Help window.
initdia Forces display of the next command’s dialog box.

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 223

Load_Dialog

The load_dialog function loads .dcl files that define dialog boxes, and returns a fileid (the
identifying number assigned by the operating system to open files) handle.

(load_dialog load_dialog load_dialog load_dialog load_dialog dclFile)

dclFile — name of the .dcl file. It is in quotation marks; remember to use double-slash
path separators, as shown below. The “.dcl” extension is not required.

(load_dialog """""c:\\\\\\\\\\filename"""""))

This function is usually used with setq to store the value of the handle, as follows:

(setq setq setq setq setq dclId (load_dialog "c:\\filename"))

This function returns a fileid handle such as 30, when successful, or -1 if not.

New_Dialog

The new_dialog function actives activates a named dialog box. This function is needed be-
cause .dcl files can contain more than one dialog box definition. Thus, load_dialog is used to
load the .dcl file, and then new_dialog is used to access the specific dialog box.

(new_dialognew_dialognew_dialognew_dialognew_dialog dlgName dclId action screenPt)

dlgName — string identifying the dialog box in the .dcl file.

dclId — DCL fileid handle retrieved earlier by the load_dialog function.

action — [optional] string containing the LISP expression that executes as default
action when users picks tiles that don’t have a DCL action or LSP callback assigned
by the action_tile function.

screenPt — [optional] 2D point list specifying the x,y-location of the dialog box’s
upper left corner of the progeCAD window. Use '(-1 -1) to open the dialog box in the
center of the progeCAD window. To use this argument without the action argument,
enter "", as follows:

(new_dialog dlgName dcl_id """""""""" '(10,10))

This function returns T when successful, or nil if not.

Start_Dialog

The start_dialog function displays the dialog box. Before this function is executed, you should
set up callbacks and other functions. This function has no arguments.

(start_dialogstart_dialogstart_dialogstart_dialogstart_dialog)

This function returns 1 when users exit the dialog box by clicking OK, or 0 if they click the
Cancel button. A -1 is returned when the dialog box is closed by the term_dialog function.

○ ○

224 tailoring progeCAD

Done_Dialog

The done_dialog function closes the dialog box.

(done_dialog done_dialog done_dialog done_dialog done_dialog status)

status — positive integer returned by start_dialog, the meaning of which the
application determines. For this to work, done_dialog must be called from a call-
back function such as action_tile.

This function returns a 2D point list in the form of '(x,y). It identifies the position of the upper-
left corner of the dialog box at the time the user exited it. This allows you to reopen the dialog
box in the same location.

Term_Dialog

The term_dialog function terminates dialog boxes. It is called by progeCAD when applica-
tions (LISP routines) terminate while .dcl files are still open. This function has no arguments.

(term_dialogterm_dialogterm_dialogterm_dialogterm_dialog)

This function always returns nil.

Unload_Dialog

The unload_dialog function unloads .dcl files from memory.

(unload_dialogunload_dialogunload_dialogunload_dialogunload_dialog dclId)

dclId — specifies the fileid handle first acquired by the load_id function.

This function always returns nil.

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 225

Get_Tile

The get_tile function retrieves the values of tiles.

(get_tileget_tileget_tileget_tileget_tile key)

key — identifies the tile to be accessed.

This function returns a string containing the value of the tile’s value attribute.

Set_Tile

The set_tile function sets the value of dialog box tiles.

(set_tileset_tileset_tileset_tileset_tile key value)

key — identifies the tile to be processed.

value — specifies a string that contains the new value to be assigned to the tile’s
value attribute.

This function returns the new value of the tile.

Get_Attr

The get_attr function retrieves the DCL value of the tile’s attribute.

(get_attrget_attrget_attrget_attrget_attr key attribute)

key — identifies the tile to be processed.

attribute – identifies the attribute whose value is to be retrieved.

This function returns a string with the attribute’s as found in the DCL file.

Mode_Tile

The mode_tile function sets the mode of dialog box tiles. This allows you to change, for ex-
ample, buttons from active (normal) to inactive (grayed out).

(mode_tilemode_tilemode_tilemode_tilemode_tile key mode)

key — identifies the tile to be processed.

mode — specifies the action to be applied to the tile:

Mode Meaning

0 Enables the tile.
1 Disables the tile (grays it out).
2 Sets focus to the tile.
3 Selects the contents of the edit box.
4 Toggles image highlighting.

This function returns nil.

○ ○

226 tailoring progeCAD

Action_Tile

The action_tile function assigns action to be evaluated when users select the dialog box’s tile.

(action_tileaction_tileaction_tileaction_tileaction_tile key action)

TIP The action assigned by this function overrules the action defined by the tile’s action
attribute, as well as the action specified by the new_dialog function.

key — identifies the tile to be processed.

action — a string that specifies the action, usually an LISP function. (LISP’s com-
mand function cannot be used, unfortunately.) You can use the following
metacharacters:

Metacharacter Meaning

$value Current value of the tile.
$key Name of the tile.
$data Application-specific data set by client_data_tile.
$reason Callback reason.
$x and $y Image’s x,y coordinates.

This function returns T.

Client_Data_Tile

The client_data_tile function associates data from a function with a tile in the dialog box.

(client_data_tileclient_data_tileclient_data_tileclient_data_tileclient_data_tile key data)

key — identifies the tile to be processed.

data — specifies the string containing the data.

TIP Functions can refer to this data as $data.

This function returns nil.

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 227

Start_List

The start_list function starts processing list boxes and popup boxes.

(start_list start_list start_list start_list start_list key operation index)

key — identifies the list box or popup box being processed.

operation — [optional] specifies the operation being performed; default is to delete
the exiting list, and replace it with a new one specified by the add_list function. The
operations are:

Operation Meaning

1 Change selected list contents
2 Append new list entry
3 Delete old list and create new list (the default)

index — [optional] specifies which list item to modify; default is #0, the first item.

This function returns the name of the list.

TIPS In all cases, you use the list-related functions in this order:
(start_list)
(add_list)
(end_list)

Autodesk warns against using the set_tile function between start_list and end_list,
because that would change the nature of the list.

All actions by the add_list function apply only to the list specified by start_list; to switch to
a different list, use end_list and then start_list.

Add_List

The add_list function adds or modifies strings in list and popup boxes, depending on the
operation specified by start_list.

(add_listadd_listadd_listadd_listadd_list strings)

strings — specifies the list of items to add or replace in the list. The string uses
quotation marks to separate items in the list, as follows:

(add_list """""firstItem" "" "" "" "" "secondItem" "" "" "" "" "thirdItem""""")

This function returns the string, if successful; otherwise nil, if not.

End_List

The end_list function ends processing of list and popup boxes.

(end_listend_listend_listend_listend_list)

This function returns nil.

○ ○

228 tailoring progeCAD

Start_Image

The start_image function starts creating vector or slide images in dialog boxes.

(start_imagestart_imagestart_imagestart_imagestart_image key)

key — specifies the key name of the image tile.

This function returns the value of key; otherwise nil, if unsuccessful.

TIPS Typically, you use the image-related functions in this order:
(start_image)
(fill_image)
(slide_image) or (vector_image)
(end_image)

Slide_Image

The slide_image function displays slides in dialog box image tiles.

(slide_imageslide_imageslide_imageslide_imageslide_image x y width height sldName)

x — specifies the number of pixels to offset the image from the upper-left corner of
the tile, in the x direction.

y — specifies the number of pixels to offset the image from the upper-left corner of
the tile, in the y direction.

width — specifies the width of the image in pixels.

height — specifies the height of the image in pixels.

sldName — specifies the name of the slide image to display, which can be in an SLD
slide file or SLB slide library file. When in a library, use this format:

(slide_image 0 0 40 30 sldlibName(sldName)sldlibName(sldName)sldlibName(sldName)sldlibName(sldName)sldlibName(sldName))

TIPS X and Y are always positive.

The coordinates of the upper left corner are 0,0.

You can get the coordinates of the lower-right corner through dimx_tile and dimy_tile, like
this:

(slide_image 0 0 (dimx_tile "slide_tile") (dimy_tile "slide_tile") "sldName")

0,0

dimx_tile, dimy_tile
(width, height)

Slide Image

This function returns the name of the sldName as a string.

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 229

Fill_Image

The fill_image function draws filled rectangles in dialog boxes.

(fill_imagefill_imagefill_imagefill_imagefill_image x y width height color)

x — specifies the number of pixels to offset the image from the upper-left corner of
the tile, in the x direction.

y — specifies the number of pixels to offset the image from the upper-left corner of
the tile, in the y direction.

width — specifies the width of the image in pixels.

height — specifies the height of the image in pixels.

color — specifies the color using ACI, or one of the following special numbers:

Number Meaning

-2 Current background color of progeCAD’s drawing area.
-15 Current background color of the dialog box.
-16 Current text color of the dialog box.
-18 Current color of dialog box lines.

This function returns an integer representing the ACI fill color.

TIP This function must be used between the start_image and end_image functions.

Vector_Image

The vector_image function draws vectors in dialog box image tiles.

(vector_imagevector_imagevector_imagevector_imagevector_image x1 y1 x2 y2 color)

x1, y1

Line color (-18)

Background color (-15).x2, y2

x1 — specifies the x coordinate of the starting point.

y1 — specifies the y coordinate of the starting point.

x2 — specifies the x coordinate of the starting point.

y2 — specifies the y coordinate of the starting point.

color — specifies the color using ACI, or one of the special numbers listed above.

TIP One vector (line) is drawn with each call of this function. The line is drawn from
x1,y1 to x2,y2.

○ ○

230 tailoring progeCAD

DimX_Tile & DimY_Tile

The dimx_tile function returns the x-dimension of the image tile’s lower right corner; the
dimx_tile function does the same for the y-dimension.

(dimx_tiledimx_tiledimx_tiledimx_tiledimx_tile key)
(dimy_tiledimy_tiledimy_tiledimy_tiledimy_tile key)

key — specifies the key name of the image tile.

0,0

dimx_tile, dimy_tile

These functions return the “x-1” width and “y-1” height of the tile.

TIPS Caution: These functions return x,y coordinates are one less than the total x and y
dimensions of the tile, because the upper-right corner is 0,0.

These functions are meant for use with the slide_image, fill_image, and
vector_image functions.

End_Image

The end_image function signals the end of the image tile’s definition.

(end_imageend_imageend_imageend_imageend_image)

This function returns nil.

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 231

Dialog Boxes Displayed by LISP Functions

The following LISP functions display progeCAD dialog boxes.

Alert

The alert function displays the alert dialog box with customized warning. You can use the \n
metacharacter to include line breaks.

 (alert alert alert alert alert "Help me!\n\n\n\n\nI've fallen and I can't get up!")

Help

The help function displays the Help window.

AcadColorDlg

The acad_colordlg function displays the Select Color dialog box with just the Index Color tab.

(acad_colordlgacad_colordlgacad_colordlgacad_colordlgacad_colordlg colorNum flag)

colorNum — specifies the default color number; ranges from 0 to 256.This integer is
a required argument, even when you don’t want to specify a default.

0 = ByBlock color.

256 = ByLayer color.

flag — [optional] disables the ByLayer and ByBlock buttons when set to nil.

○ ○

232 tailoring progeCAD

For example, to open the Select Color dialog box, set red (1) as the default color, and gray out
the By-buttons, use this form of the function:

(acad_colordlg 1 nil)

This function returns the number of the color selected by the user, or nil when the user clicks
Cancel.

Acad_TrueColorDlg

The acad_truecolordlg function displays the Select Color dialog box with all tabs.

(acad_truecolordlgacad_truecolordlgacad_truecolordlgacad_truecolordlgacad_truecolordlg color flag byColor)

color — specifies the the default color as a dotted pair, where the first value is the
DXF code for the type of color specification:
62 = ACI (index color).

420 = TrueColor spec in RGB (red-green-blue) format.

430 = color book name.

Use the following formats:

Color Format Dotted Pair Format Example for Red

ACI (62 . ColorIndex) (62 . 1)
TrueColor (420 . "red,green,blue") (420 . "255,0,0")
Color Book (430 . "colorbook$colorname") (430 . "RAL CLASSIC$RAL 3026")

flag — [optional] disables the ByLayer and ByBlock buttons when set to nil.

byColor — [optional] sets the value of ByLayer and ByBlock color; use the same
format as for color.

This function returns the color selected by the user in dotted-pair format. The list may contain
more than one dotted-pair; the last one is the one selected by the user. For example, if the user
selects from a color book, then the list contains the 430 pair (specifying the color book), as well
as a 420 pair containing the TrueColor value and a 62 pair describing the closest ACI value.

Nil is returned when the user clicks Cancel.

○ ○

chapter 11 dcl referencedcl referencedcl referencedcl referencedcl reference 233

InitDia

The initdia function forces the display of the dialog box of the following command, such as: x.

(initdia initdia initdia initdia initdia flag)
(command "image")

flag — [optional] when 0, resets command to display prompts at the command line.

This function is meant for commands that normally display their prompts at the command line
during LISP routines. This function always returns nil.

○ ○

234 tailoring progeCAD

with a name like “direct interactively evaluated string expression language,” the pro-
gramming logic of Diesel is as clear as the acronym’s meaning. Despite the word “string”
(meaning text), Diesel also operates with numbers.

The original purpose of the Diesel macro language was to customize the AutoCAD status
bar, but it has since found its way into menu and toolbar macros, and became the most
powerful programming environment available in AutoCAD LT — much to the chagrin of
Autodesk, who had deliberately disabled the AutoLISP that was to ship with LT.

Is Diesel a Programming Language?

For me, the line of demarkation macros and true programming languages is whether they
contains logic functions, such as if-then, while, greaterthan, and so on. (Logic functions
allow programs to make decisions.)

Diesel has logic functions. But overall, its syntax is so obscure and functions so few that it
begs to be known as a macro language — and that’s how I’ll refer to it from now on.

TIP At time of writing this book, progeCAD did not support accessing system
variables with the $(getvar function.

12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567

In This Chapter

• How Diesel works. • Using Diesel in macros and LISP.
• Diesel funtion names. • Debugging Diesel.
• Using the ModeMacro and MacroTrace commands.

C • H • A • P • T • E • R 12

Employing Diesel
Expressions

○ ○

chapter 12 employing diesel expressionsemploying diesel expressionsemploying diesel expressionsemploying diesel expressionsemploying diesel expressions 235

What Diesel Does

Can make changes to the progeCAD’s status bar so that it displays information useful to you,
such as the current elevation, the .dwg file name, or the current time. There is a limitation,
however: the text displayed by Diesel is truncated after a 39 characters, no matter how big
you make the progeCAD window. To display text on the status bar, use the ModeMacro
command.

Diesel has an unusual format for a macro language. Every function begins with a dollar sign
and a bracket:

$(function,variable)

No doubt, the purpose of the $-sign is to alert progeCAD’s command processor that a Diesel
expression is on the way, just as the (symbol alerts progeCAD that an LISP expression is
coming up. (The $ symbol is sometimes used by programmers to indicate strings.)

The beginning and end of Diesel functions are indicated by opening and closing parentheses.
Parentheses also allow Diesel functions to be nested, where the result of one function is
evaluated by a second. Parentheses allow Diesel to work on more than one variable at a time
— up to nine variables for some functions; the closing parenthesis alerts Diesel to the end of
the list of variables.

In total, there are 28 functions available in Diesel. Most of them take at least one variable,
some as many as nine. Functions can be used at the command line, in toolbar and menu
macros, in LISP code, and other areas of progeCAD. A comma always separates the function
name and its variable(s). Diesel tolerates no spaces.

Brief List of Diesel Functions

Here is a summary of the functions supported by Diesel:

Math Functions

+++++ Addition.
----- Subtraction.
***** Multiplication.
///// Division.

Logic Functions

===== Equal.
<<<<< Less than.
>>>>> Greater than.
! =! =! =! =! = Not equal.
< =< =<=<=<= Less than or equal.
> => =>=>=>= Greater than or equal.
a ndandandandand Logical bitwise AND.
e qe qe qe qe q Determines if all items are equal.
i fi fi fi fi f If-then.
o ro ro ro ro r Logical bitwise OR.
xo rxo rxo rxo rxo r Logical bitwise XOR.

○ ○

236 tailoring progeCAD

Numeric Conversion Functions

angtosangtosangtosangtosangtos Formats angles (angle to string).
f ixf ixf ixf ixf ix Truncates real numbers to rounded-down integers.
r tosr tosr tosr tosr tos Formats numbers with units (real to string).

String (Text) Functions

indexindexindexindexindex Extracts one element from a comma-separated series.
n thn thn thn thn th Extracts the nth element from one or more items.
st r lenstr lenstr lenstr lenstr len Returns the number of characters in the string (string length).
substrsubstrsubstrsubstrsubstr Returns a portion of a string.
uppe rupperupperupperupper Converts a text string to uppercase characters.

System Functions

edtimeedtimeedtimeedtimeedtime Formats the system time.
e va le v a le v a le v a le v a l Passes a string to Diesel.
ge tva rge tva rge tva rge tva rge tva r Gets the value of a system variable.
getenv Gets the value of an environment variable (does not operate in progeCAD).
linelen Returns the length of the display (does not operate in progeCAD).

ModeMacro: Displaying Text on the Status Bar

The ModeMacro command is used to display text on the status bar. Let’s see how that works.

1. Enter the ModeMacro system variable at the ‘Command:’ prompt, and then type
something:

Command: modemacromodemacromodemacromodemacromodemacro
New value for MODEMACRO, or . for none <"">: Tailoring progeCADTailoring progeCADTailoring progeCADTailoring progeCADTailoring progeCAD

The words “Tailoring progeCAD” should appear next to the coordinate display:

(You cannot change the location of this text.)

2. To remove the text from the status bar, type the ModeMacro system variable with a .
(null string), as follows:

Command: modemacromodemacromodemacromodemacromodemacro
New value for MODEMACRO, or . for none <"Tailoring progeCAD">: "" "" "" "" ""

Reporting Values of System Variables

To display the values of system variables on the status bar, use Diesel’s $(getvar function.
This function gets the value of a system variable, and then displays it on the status bar.

1. For this tutorial, display the current elevation with the FilletRad system variable, as
follows:

Command: modemacromodemacromodemacromodemacromodemacro
New value for MODEMACRO, or . for none <"">: $(getvar,filletrad)$(getvar,filletrad)$(getvar,filletrad)$(getvar,filletrad)$(getvar,filletrad)

○ ○

chapter 12 employing diesel expressionsemploying diesel expressionsemploying diesel expressionsemploying diesel expressionsemploying diesel expressions 237

progeCAD displays 0.0000 or something similar on the status bar.

2. Use the FilletRad system variable to change the elevation to 10:
Command: filletradfilletradfilletradfilletradfilletrad
Enter new value for FILLETRAD <0.0000>: 1010101010

3. Reenter the ModeMacro sysvar to update the value reported on the status bar:
Command: modemacromodemacromodemacromodemacromodemacro
New value for MODEMACRO, or . for none <"0.0000">: $(getvar,filletrad)$(getvar,filletrad)$(getvar,filletrad)$(getvar,filletrad)$(getvar,filletrad)

4. The values of 0 and 10 can be made more useful by adding a description, such as Fillet
radius=10.” Here’s how:

Command: modemacromodemacromodemacromodemacromodemacro
New value for MODEMACRO, or . for none <"">: Fillet radius=$(getvar,elevation)Fillet radius=$(getvar,elevation)Fillet radius=$(getvar,elevation)Fillet radius=$(getvar,elevation)Fillet radius=$(getvar,elevation)

Notice that text can be used together with Diesel code.

While Diesel can get the values of system variables, it cannot change then, because there is
no related “setvar” function.

Debugging Diesel

Diesel is not a forgiving language, and so it is easy to make errors. Here are some common
mistakes you might make:

• Forget the closing parenthesis:
$(+,1,2 should be $(+,1,2)

• Forget the closing quotation mark on the right:
$(upper,"to) should be $(upper,"to").

• Enter an incorrect function name:
$(stringlength,"Example") should be $(strlen,"Example").

• Include the wrong number of arguments for the function:
$(edtime) should be $(edtime,$(getvar,date),DDD).

• Text to be displayed on the status bar has too many characters.

When progeCAD senses an error, it reports the location on the status bar, like this:

○ ○

238 tailoring progeCAD

MacroTrace

To help track down bugs in Diesel macros, turn on the undocumented MacroTrace system
variable, as follows:

Command: macrotracemacrotracemacrotracemacrotracemacrotrace
New value for MACROTRACE <0>: 11111

When on, progeCAD displays a step-by-step evaluation of the Diesel macro in the Text win-
dow. Here’s how it works for the following Diesel macro, which converts the value of the
fillet radius to metric: $(*,2.54, $(getvar,filletrad))

Command: modemacromodemacromodemacromodemacromodemacro
New value for MODEMACRO, or . for none <"">: $(*,2.54,$(getvar,filletrad))$(*,2.54,$(getvar,filletrad))$(*,2.54,$(getvar,filletrad))$(*,2.54,$(getvar,filletrad))$(*,2.54,$(getvar,filletrad))
Eval: $(*, 2.54, $(getvar,filletrad))
Eval: $(GETVAR, filletrad)
===> 0.5
===> 1.27

There is a bug in MacroTrace that causes it to reevaluate the most recent Diesel expression
over and over again. Each time I type something at the ‘Command:’ prompt (such as the
Line command), MacroTrace re-displays its evaluation. It does not, however, interfere ex-
cept visually. Turn off MacroTrace when you no longer need it, as follows:

Command: macrotracemacrotracemacrotracemacrotracemacrotrace
New value for MACROTRACE <1>: 00000

Using Variables

Diesel functions work with variables. First, use the SetVar command to manually store a
value in one of the user system variables, such as UserR1:

Command: setvarsetvarsetvarsetvarsetvar
Enter variable name or [?] <MODEMACRO>: userr1userr1userr1userr1userr1
Enter new value for USERR1 <0.0000>: 3.1413.1413.1413.1413.141

And then access it with the $(getvar function:

$(+++++,$(getvargetvargetvargetvargetvar,userr1),25)

You can use the following user system variables:

UserR1 through UserR5 for storing real numbers (numbers with decimals).

UserI1 through UserI5 for storing integers (numbers without decimals).

UserS1 through UserS5 for storing strings (text).

○ ○

chapter 12 employing diesel expressionsemploying diesel expressionsemploying diesel expressionsemploying diesel expressionsemploying diesel expressions 239

Diesel Functions

Here are additional details on Diesel functions.

Math Functions

Diesel supports the four basic arithmetic functions.

+ (Addition)

The + function adds together up to nine numbers:

$(+++++,2,3.4,10,5) returns 20.4

The answer appears on the status bar:

The function works with as little as one value:

$(+++++,2) returns 2

- (Subtraction)

The - function subtracts as many as eight numbers from a ninth. For example, the following
equation should be read as 2 - 3.4 - 10 - 5 = -16.4:

$(-----,2,3.4,10,5) returns -16.4

And this equation should be read as 2 - 0 = 2:

$(-----,2) returns 2

* (Multiplication)

The * function multiples together up to nine numbers.

$(*****,2,3.4,10,5) returns 340

When you have the value of pi (3.141) stored in UserR1, you can perform calculations that
involve circles.

For instance, to find the area of a circle, recall that the formula is pi * r2. Diesel doesn’t
support squares or exponents, so you need to multiple r by itself: pi * r * r. To find the area
of a 2.5"-radius circle, enter the following:

$(*****,$(getvargetvargetvargetvargetvar,userr1),2.5,2.5) returns 19.63125

/ (Division)

The / function divides one number by up to eight other numbers.

$(/////,2,3.4,10,5) returns 0.01176471

This should be read as 2 I 3.4 I 10 I 5 = 0.1176471.

○ ○

240 tailoring progeCAD

Logic Functions

The logic functions test to see if two (or more) values are equal (or not).

= (Equal)

The = function determines if two numbers (or strings) are equal. If so, the function returns
1; if not, it returns 0.

$(eqeqeqeqeq,2,2) returns 1
$(eqeqeqeqeq,2,3.4) returns 0

The values have to be exactly equal; for instance, a real number is not the same as an integer
number, as the following example illustrates:

$(eqeqeqeqeq,2.0,2) returns 0

Normally, you would not test two numbers, but you would a number and a value stored in
a variable. For example, to check if LUnits is set to 4 (architectural units):

$(eqeqeqeqeq,$(getvargetvargetvargetvargetvar,lunits),4) returns 1 when LUnits = 4.
returns 0 if LUnits = any other number.

< (Less than)

The < function determines if one number is less than another. If so, the function returns 1;
if not, it returns 0.

$(<<<<<,2,2) returns 0
$(<<<<<,2,3.4) returns 1

> (Greater Than)

The > function determines if one number is greater than another. If so, the function returns
1; if not, it returns 0.

$(>>>>>,2,2) returns 0
$(>>>>>,2,3.4) returns 1

!= (Not Equal)

The != function determines if one number is not equal to another. If not equal, the function
returns 1; if equal, it returns 0.

$(!=!=!=!=!=,2,2) returns 0
$(!=!=!=!=!=,2,3.4) returns 1

<= (Less Than or Equal)

The <= function determines if one number is less or equal than another. If so, the function
returns 1; if not, it returns 0.

$(<=<=<=<=<=,2,2) returns 1
$(<=<=<=<=<=,2,3.4) returns 1
$(<=<=<=<=<=,9,0.5) returns 0

○ ○

chapter 12 employing diesel expressionsemploying diesel expressionsemploying diesel expressionsemploying diesel expressionsemploying diesel expressions 241

>= (Greater Than or Equal)

The >= function determines if one number is greater than or equal than another. If so, the
function returns 1; if not, it returns 0.

$(>=>=>=>=>=,2,2) returns 1
$(>=>=>=>=>=,9,0.5) returns 1
$(>=>=>=>=>=,2,3.4) returns 0

and (Logical Bitwise AND)

The and function returns the bitwise logical “AND” of two or more integers. This function
operates on up to nine integers.

eq

The eq function determines if two numbers (or strings) are equal. If identical, the function
returns 1; otherwise, it returns 0.

$(eqeqeqeqeq,2,2) returns 1
$(eqeqeqeqeq,9,0.5) returns 0

This function appears to operate identically to the = function.

if

The if function checks if two expressions are the same. If so, the function carries out the first
option, and ignores the second option; if false, it carries out the second option. In generic
terms:

$(ififififif,test,true,false)

where

test — specifies the logic function, such as $(eq,clayer,0); the test expects a value of 1
(true) or 0 (false).

true — indicates the action to take when the test is true.

false — indicates the action to take when the test is false.

For example, the following test checks to see if the current layer is not 0. If so, it then gets the
name of the layer. Notice that the true parameter is missing.

$(ififififif,$(eqeqeqeqeq,clayer,"0"),,$(getvargetvargetvargetvargetvar,clayer))

or (Logical Bitwise Or)

The or function returns the bitwise logical “OR” of two or more integers.

xor (Logical Bitwise Xor)

The xor function returns the bitwise logical “XOR” (eXclusive OR) of two or more integers.

○ ○

242 tailoring progeCAD

Conversion Functions

The conversion functions change the state of numbers.

angtos

The angtos function formats numbers as angles (short for “angle to string”). In generic
terms, the function looks like this:

$(angtosangtosangtosangtosangtos,value,mode,prec)

where:

value — the real number being formatted; an angle.

mode — determines the formatting; see table below.

prec — specifies the precision; see table below.

Mode and prec are optional; when left out, Diesel uses the values specified by the AUnits and
AuPrec system variables, respectively.

Mode (AUnits) Meaning

0 Displays angles as decimal degrees.
1 Displays angles as degrees, minutes, seconds.
2 Displays angles as grads.
3 Displays angles as radians.
4 Displays angles as surveyor’s units.

Prec Range (AuPrec)

Decimal 0 to 0.00000000
DMS 0d to 0d00'00.0000"
Grads 0g to 0.00000000g
Radians 0r to 0.00000000r
Surveyor’s units N 0d E to N 0d00'00.0000" E

You can preset the mode and prec with the Units command. For example, when the Units
command is set to Surveyor’s Units with a precision of 0 decimal places, we get the following
response:

$(angtosangtosangtosangtosangtos,90) returns N 26d37'13" W

Or, we can use the optional mode and prec settings inside the AngToS function:

$(angtosangtosangtosangtosangtos,90,4,3) also returns N 26d37'13" W

fix

The fix function removes the decimal portion from real numbers, converting them to inte-
gers. This function can be used to extract the number before the decimal point from a real
number. (There is no “round” function.)

$(fixfixfixfixfix,3.99) returns 3

○ ○

chapter 12 employing diesel expressionsemploying diesel expressionsemploying diesel expressionsemploying diesel expressionsemploying diesel expressions 243

rtos

The rtos function applies units to numbers (short for “real to string”). This can be useful for
displaying two different measurement units on the status bar. This function operates simi-
larly to the angtos function:

$(rtosrtosrtosrtosrtos,value,mode,prec)

where:

value — the real number being formatted.

mode — determines the formatting; see table below.

prec — specifies the precision; see table below.

Mode and prec are optional; when left out, Diesel uses the values specified by the LUnits and
LuPrec system variables, respectively (L is short for “linear”).

Mode (LUnits) Meaning

1 Displays numbers in scientific notation.
2 Displays numbers in decimal format.
3 Displays numbers in engineering format.
4 Displays numbers in architectural format.
5 Displays numbers in fractional format.

Prec Range (LuPrec)

Scientific 0E+01 to 0.00000000E+01
Decimal 0 to 0.00000000
Engineering 0'-0" to 0'-0.00000000"
Architectural 0'-0" to 0'-0 1/256"
Fractional 0 to 0 1/256

You can preset the mode and prec with the Units command. When the Units command
sets Architectural units with a precision of 3 decimal places, we get this result:

$(rtosrtosrtosrtosrtos,90.25) returns 7'-6 1/4"

Or, you can use the optional mode and prec settings inside the function:

$(rtosrtosrtosrtosrtos,90.25,4,3) also returns 7'-6 1/4"

String Functions

The string functions manipulate text (and sometimes numbers).

index

The index function extracts one element from a comma-separated series. Autodesk sug-
gests using this function to extract the x, y, and z coordinates from variables returned by the
($getvar function. In generic terms, the function looks like this:

$(indexindexindexindexindex,item,string)

where:

item — a counter; starts with 0.

string — the text being searched; contains comma-separated items.

○ ○

244 tailoring progeCAD

Note that the item counter starts with 0, instead of 1; the first item is #0:

$(indexindexindexindexindex,0,"2,4,6") returns 2

String must be text surrounded by quotation marks; if you leave out the quotes, Diesel ig-
nores the function. The string consists of one or more items separated by commas.

Here is an example of extracting the y coordinate from the LastPoint system variable:

$(indexindexindexindexindex,1,$(getvar,lastpoint)) returns 64.8721

(The result will differ, depending on the coordinate stored in LastPoint.) Use the following
item values to extract specific coordinates:

Item Coordinate Extracted

0 X
1 Y
2 Z

nth

The nth function extracts the nth element from one or more items. This function handles up
to eight items. Like index, the first item in the list is #0. In generic terms, the function looks
like this:

$(nthnthnthnthnth,item,n1,n2,...)

where:

item — a counter; range is 0 to 7.

n — a list of items separated by comma; maximum of eight items in the list.

If item exceeds n, then Diesel ignores this function.

Here are examples of using the function with numbers and text:

$(nthnthnthnthnth,2,2.3,4.5,6.7) returns 6.7
$(nthnthnthnthnth,1,Tailoring,proge,CAD) returns proge

strlen

The strlen function returns the number of characters in the string (short for “string length”).
This function is useful for finding the length of a string before applying another function,
such as substr.

$(strlenstrlenstrlenstrlenstrlen,Tailoring progeCAD) returns 18

If the string is surrounded by quotation marks, Diesel ignores them.

$(strlenstrlenstrlenstrlenstrlen,"Tailoring progeCAD") also returns 18

This function also works with numbers and system variables:

$(strlenstrlenstrlenstrlenstrlen,3.14159) returns 7
$(strlenstrlenstrlenstrlenstrlen,$(getvargetvargetvargetvargetvar,platform)) returns 38

○ ○

chapter 12 employing diesel expressionsemploying diesel expressionsemploying diesel expressionsemploying diesel expressionsemploying diesel expressions 245

substr

The substr function returns a portion of a string (short for “sub string”). This is useful for
extracting text from a longer portion. Generically, the function looks like this:

$(substrsubstrsubstrsubstrsubstr,string,start,length)

where

string — specifies the text to be handled.

start — indicates the starting position of the substring; first character is #1.

length — specifies the length of the substring; optional. If left out, the entire rest of the
string is returned.

Here are some examples of this function at work:

$(substrsubstrsubstrsubstrsubstr,Tailoring progeCAD,5) returns oring progeCAD
$(substrsubstrsubstrsubstrsubstr,Tailoring progeCAD,5,7) returns oring p

If the string is surrounded by quotation marks, Diesel ignores them.

$(substrsubstrsubstrsubstrsubstr,”Tailoring progeCAD”,5) also returns oring progeCAD

This function also works with numbers and system variables:

$(substrsubstrsubstrsubstrsubstr,3.14159,1,4) returns 3.14
$(substrsubstrsubstrsubstrsubstr,$(getvargetvargetvargetvargetvar,platform),5,15) returns osoft Windows N

upper

The upper function converts text strings to uppercase characters. (There is no “lower” func-
tion in Diesel.) It works with text and system variables, as follows:

$(upperupperupperupperupper,"Tailoring progeCAD") returns TAILORING PROGECAD
$(upperupperupperupperupper,$(getvargetvargetvargetvargetvar,platform)) returns MICROSOFT WINDOWS NT VERSION 5.0 (X86)

The function also works with numbers, but leaves them unchanged.

System Functions

The system functions are a collection of miscellaneous functions.

edtime

The edtime function formats the display of the system time. Notice that Windows displays
the time, such as 11:37 AM, at the right end of the task bar, but you can have Diesel display
a customized version of the date and time at the left end of progeCAD’s status bar.

This function reads the date and time from the Date system variable, and then formats it
according to your instructions. Generically, the function looks like this:

$(edtimeedtimeedtimeedtimeedtime,$(getvargetvargetvargetvargetvar,date),format)

where

format — specifies how the date and time should be displayed, as illustrated by the table
below.

○ ○

246 tailoring progeCAD

When format contains text that Diesel cannot interpret, it is displayed literally. The table
shows date formatting codes for a date of September 5, 2010:

Date Formats Meaning Example

D Single-digit date 5
DD Dual-digit date 05
DDD Three-letter day Fri
DDDD Full-letter day Friday
M Single-digit month 9
MO Dual-digit month 09
MON Three-letter month Sep
MONTH Full-letter month September
YY Dual-digit year 10
YYYY Four-digit year 2010

The table below lists time formatting codes for a time of 1:51:23.702AM:

Time Formats Meaning Example

H Single-digit hour 1
HH Dual-digit hour 01
MM Minutes 51
SS Seconds 23
MSEC Milliseconds 702
AM/PM Uppercase AM or PM AM
am/pm Lowercase AM or PM am
A/P Abbreviated uppercase A
a/p Abbreviated lowercase a

TIPS To use commas in the format code, surround them with "," so that Diesel
does not read the comma as an argument separator.

The quotation mark trick does not work for words like "Date" and "Month": Diesel
returns 1date and 7onth.

The date and time codes are case-insensitive; D and d work the same. The excep-
tions are for the AM/PM and am/pm codes.

When the AM/PM and A/P format codes are used, Diesel displays the 12-hour
clock; when they are left out, Diesel displays the 24-hour clock.

The AM/PM and A/P format codes must be entered with the slash. If, say, PM is
entered, then Diesel returns P literally and reads M as the single-digit month code.

Here are some examples of using the EdTime function:
$(edtimeedtimeedtimeedtimeedtime,$(getvargetvargetvargetvargetvar,date),H:MMam/pm) returns 11:58am
$(edtimeedtimeedtimeedtimeedtime,$(getvargetvargetvargetvargetvar,date),DDD"," DD-MO-YY) returns Thu, 01-07-10
$(edtimeedtimeedtimeedtimeedtime,$(getvargetvargetvargetvargetvar,date), DDD"," d mon"," YYYY) returns Thu, 1 Jul, 2010

eval

The eval function displays text on the status bar:

Command: modemacromodemacromodemacromodemacromodemacro
Enter new value for MODEMACRO, or . for none <"">: $(eval,"This is text")$(eval,"This is text")$(eval,"This is text")$(eval,"This is text")$(eval,"This is text")
Displays This is text on the status bar.

○ ○

chapter 12 employing diesel expressionsemploying diesel expressionsemploying diesel expressionsemploying diesel expressionsemploying diesel expressions 247

It is equivalent to using the ModeMacro command without Diesel:

Command: modemacromodemacromodemacromodemacromodemacro
Enter new value for MODEMACRO, or . for none <"">: This is textThis is textThis is textThis is textThis is text

getvar

The getvar function gets the values of system variables (short for “get variable”).

$(getvargetvargetvargetvargetvar,lunits) returns 4

Diesel Programming Tips

Here are some tips for working with Diesel:

• Each argument must be separated by a comma; there must be no spaces within the
expression.

• The maximum length of a Diesel macro is 240 characters; the maximum display on the
status bar is 32 characters.

• The ModeMacro system variable outputs text directly to the status bar until it reaches
a $(, and then it begins evaluating the macro.

• To prevent evaluation of a Diesel macro, use quoted strings : "$(+,1)"; to display
quotation marks on the status bar, use double quotations: ""Test""

• Use the MacroTrace system variable to debug macros.

• Use AutoLISP’s (strcat) function to string together Diesel macros within AutoLISP.

• Use the $M= construct to use Diesel expressions in menu and toolbar macros.

John Walker, the programmer who created Diesel, notes that additional functions could be
made available in Diesel, but are not. These unimplemented functions include setvar and
time. He provides instructions for accessing the Diesel source code and recompiling it with
other functions. See www.fourmilab.ch/diesel.

Diesel in Menus and Toolbars

Let’s now see how Diesel code can be used in menu and toolbar macros —
and discover just how complex Diesel programming can get. For our ex-
amples, we will use ones from AutoCAD, because progeCAD doesn’t use Die-
sel in its default menu files (menus, shortcuts, and so on are hardcoded into
progeCAD.

The most common use of Diesel by AutoCAD is to turn check marks on and
off in menus; Diesel is also used to determine which draw-
ings states are active, such as grips, model space, and refer-
ence editing.

The View menu shows several examples: select Display, and
then notice the check mark in front of Status Bar and the
names of other user interface elements.

It is trivial to display check marks in menus: simply prefix a

○ ○

248 tailoring progeCAD

word like “Status Bar” with the !. (exclamation-dot) metacharacter. Toggling the display of
check marks is trickier in AutoCAD, requiring the use of a Diesel macro that look like this:

$(ififififif,$(eqeqeqeqeq,$(getvargetvargetvargetvargetvar,varname),1),!.)&Status Bar

(In this part of the chapter, Diesel code is shown in color, while menu code is shown in black.

The job of the macro above is to determine whether the check mark should be displayed in
front of Normal. This macro is called the “name” (or label in earlier releases).

Parsing the Name Macro

Let’s figure out the meaning of the followin macro, character by character.

$(ififififif,$(eqeqeqeqeq,$(getvargetvargetvargetvargetvar,attmode),1),!.)&Normal

To make it easier to read, I’ll parse the code. Parsing places each function on its own line, as
follows:

$(ififififif, If AttMode...
$(eqeqeqeqeq, equals...

$(getvargetvargetvargetvargetvar,attmode), (get value of AttMode)
1), 1

!.) then display the check mark.
&Normal And display NNNNNormalormalormalormalormal.

Let’s look at the meaning of the code in greater detail.

$(if, ... !.)

The if function tests the eq expression that follows. If the expression is true, then the !.
metacharacter is executed and the check mark is displayed; if not, it’s not.

12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567

progeCAD’s Checkmark Function

progeCAD doesn’t use Diesel to toggle checkmarks in menu items, unlike AutoCAD. When
you export the menu from progeCAD with the Customize command’s Export button, you
will see the following code in Notepad for the View | Display | Status Bar item:

[MnuItem-124]
NameNameNameNameName=Status &Bar F10
CommandCommandCommandCommandCommand='_STATBAR;_T
HelpStringHelpStringHelpStringHelpStringHelpString=Turns the Status Bar on and off
ChekVarChekVarChekVarChekVarChekVar=WNDLSTAT
VisibilityVisibilityVisibilityVisibilityVisibility=239
SubLevelSubLevelSubLevelSubLevelSubLevel=2

The checkmark is toggle by the ChekVar parameter, which checks the value of system
variable WndlStat.

○ ○

chapter 12 employing diesel expressionsemploying diesel expressionsemploying diesel expressionsemploying diesel expressionsemploying diesel expressions 249

$(eq, ... 1),

The eq function tests the value of the AttMode system variable returned by GetVar. If the
value is 1, then the eq function returns true; if any other value, it returns false.

$(getvar,attmode),

The getvar function retrieves the value of the AttMode system variable. While this system
variable has three possible meanings, it has just two possible meanings in this macro:

AttMode Meaning Meaning for Diesel Macro

0 Off: all attributes are invisible. False (0)
1 Normal: visible attributes are displayed. True (1)
2 On: all attributes are displayed. False (0)

&Normal

The &Normal displays the word Normal in the menu, with the letter N underlined. (The &
metacharacter appears in front of the letter to be underlined, for keyboard access.)

Note that a second macro does the actual toggling of the attributes’ display through the
AttDisp command:

'_attdisp _n

Parsing Diesel in Macros

In the example above, Diesel was used to control the display of a menu item. Let’s now turn
to another macro. This one checks conditions before executing commands:

$M=$(ififififif,$(eqeqeqeqeq,$(substrsubstrsubstrsubstrsubstr,$(getvargetvargetvargetvargetvar,cmdnames),1,4),GRIP),_move,^C^C_move)

Briefly, this macro checks whether grips editing is active. If so, it executes the Move com-
mand; if not, it cancels the current command, and then executes the Move command.

When Diesel is used with menu and toolbar macros, it must be prefixed with the $M=
metacharacter. (I don’t know why “M” is used — for ModeMacro, perhaps?)

The code that checks if grips are enabled before executing the Move command:

$M= Start Diesel macro.
$(ififififif, If the value of CmdNames...

$(eqeqeqeqeq, equals
$(substrsubstrsubstrsubstrsubstr, the substring

$(getvargetvargetvargetvargetvar,cmdnames) (gotten from the system variable CmdNames)
,1,4) first four characters

,GRIP) “GRIP”
,_move, Then execute the Move Move Move Move Move command.

^C^C_move) Otherwise, cancel the current command (^C^C),
and then execute the Move Move Move Move Move command.

In other words: if the four characters of the system variable CmdNames equal “GRIP” then
execute the Move command; if not, cancel the current command and then execute the
Move command.

○ ○

250 tailoring progeCAD

Bitcode Macros

Not all system variables are straightforward toggles, where progeCAD just checks if the
value is 0 or 1. Some are bitcodes, where three or more integers can represent many values.

Bitcodes are used when different combinations of settings are possible. The most extreme is
the OsnapMode system variables, with its 15 bitcodes representing ENDpoint, INTersection,
and other object snap modes. When dealing with bitcodes, you need to use Diesel’s and
operator, instead of eq.

An example is the macro that toggles the display of the check mark in AutoCAD’s View |
Display | UCS Icon menu.

$(ififififif,$(andandandandand,$(getvargetvargetvargetvargetvar,ucsicon),1),!.)&On

UscIcon BitCode Meaning

0 0 UCS icon not displayed.
1 1 UCS icon is displayed at the lower-left corner of the current viewport.
2 2 UCS icon is displayed at the origin, if possible.
3 1+2 UCS icon is on.

The longest Diesel macro may well be this one:

^C^C_dview$M=$(if,$(or,$(eq,$(getvar,tilemode),1),$(!=,$(getvar,cvport),1)),$(if,$(and, $(getvar,viewmode),2),
$(if,$(and,$(getvar,viewmode),4), _all _cl _off _cl _b _on^M, _all _cl _off^M), _all _cl _f $(getvar,frontz)^M)^Z)

Diesel in AutoLISP

There are two ways to use Diesel expressions inside AutoLISP routines: with the setvar
function, and the menucmd function. I don’t know if there is a preference for either among
the programming community; either way, Diesel is accessed in an indirect manner.

Via the Setvar Function

AutoLISP’s setvar function is used in conjunction with the ModeMacro system variable.
You’ll recall from earlier tutorials that the ModeMacro system variable executes Diesel from
the ‘Command:’ prompt. The same trick is used here.

To show how this works, I'll write an AutoLISP routine to display the fillet radius on the
status bar — using Diesel (shown in color).

(defun defun defun defun defun frad ()
(setvar setvar setvar setvar setvar "modemacro" "Current fillet radius: $(getvar,filletrad)$(getvar,filletrad)$(getvar,filletrad)$(getvar,filletrad)$(getvar,filletrad)")

)

Recall that the FilletRad system variable contains the current setting for the filleting ra-
dius.

Concatenate Two Diesel Strings

To display more than one piece of information on the status bar, I use AutoLISP’s strcat
function to concatenate the two Diesel strings to the ModeMacro system variable in one
piece. The following AutoLISP code displays the two chamfer distances at the status bar:

○ ○

chapter 12 employing diesel expressionsemploying diesel expressionsemploying diesel expressionsemploying diesel expressionsemploying diesel expressions 251

(defun defun defun defun defun chab ()
(setvar setvar setvar setvar setvar "modemacro"

(strcat strcat strcat strcat strcat "Chamfer A: $(getvargetvargetvargetvargetvar,chamfera)" "Chamfer B: $(getvargetvargetvargetvargetvar,chamferb)")
)

)

Via the MenuCmd Function

The second method for using Diesel in AutoLISP functions employs the menucmd function
along with the M= construct, as follows:

(defun defun defun defun defun chab ()
(menucmd menucmd menucmd menucmd menucmd "M=Current fillet radius: $(getvargetvargetvargetvargetvar,filletrad)")

)

The M= should be familiar from the earlier discussion of using Diesel inside of menu mac-
ros.

○ ○

252 tailoring progeCAD

dWG and DXF are the two most important file formats in the Province of AutoCAD, and
maybe even in the Country of CAD. There are one billion, two billion, three billion, or more
CAD drawings in DWG format — all rough estimates, depending on the source you read.

Despite Autodesk calling DWG “a standard,” it does not document the file format, because the
company wants to be able to make changes to it without being beholden to a standards body.
Because Autodesk keeps DWG closed, the Open Design Alliance was formed to document the
format, and to provide programming code that allows other CAD companies to more easily
access drawings saved in DWG.

There is a public face to DWG, and it is DXF (short for “drawing interchange format”). Autodesk
created DXF in the earliest days of AutoCAD as the means by which third-party developers
could access the data stored in drawing files.

This chapter describes the DXF format, which is also read and written by progeCAD and many
other graphical software packages.

References

On the Internet, you can read Autodesk’s DXF references at www.autodesk.com/dxf for
AutoCAD Release 13 through to AutoCAD 2009.

Autodesk does not document DWG, but the Open Design Alliance does. Its R13-2007 DWG
specification is in RTF (rich text format) at www.opendesign.com/guestfiles.

12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567
12345678901234567890123456789012123456789012345678901234567

In This Chapter

• DWG and DXF file format versions. • Object properties.
• The format of DXF. • Group codes.

C • H • A • P • T • E • R 13

Understanding DXF

○ ○

chapter 13 understanding dxfunderstanding dxfunderstanding dxfunderstanding dxfunderstanding dxf 253

Introduction

DXF files can be created from progeCAD drawings using by the DxfOut command (short for
“dxf output”).

Left: DxfOut dialog box.
Right: SaveAs dialog box.

As an alternative, you can use the SaveAs command, and then select one of the many “AutoCAD
DXF” formats from the Files of type droplist.

DXF Formats

progeCAD outputs DXF in two primary formats:

• ASCII is a human-readable format, and can be opened with any text editor, such
as Notepad. When you select ASCII format, you can also specify the number of
decimal places; some CAM software, for example, requires that DXF format use
four decimal places only.

• Binary is a compact format that can be written and read more quickly by computer
software. Be aware that not all software can read the binary format of DXF.

In addition, you can specify the release with which to be compatible:

• AutoCAD 2007 (also compatible with AutoCAD 2008 and 2009)

• AutoCAD 2004 (also compatible with AutoCAD 2005 and 2006)

• AutoCAD 2000 (also compatible with AutoCAD 2000i and 2002)

• Release 14

• Release 13

• Release 11/12

• Release 10

○ ○

254 tailoring progeCAD

• Release 9

• Version 2.6

• Version 2.5

The DXF format is also used by LISP to access entity data through dotted pairs. In the DXF
documentation later in this chapter, “DXF” indicates group codes used by .dxf files only, and
“APP” indicates group code used in LISP only. All other group codes apply to both .dxf files
and dotted pairs.

DWG and DXF Content

The DWG and DXF formats share similarities in their file structure.

Version Indentifier. Both start off with a version identifier. For instance, files saved in
AutoCAD 2005 format show an identifier of AC1018. (AC = AutoCAD; 1018 = the 18th revi-
sion of the file format.)

Table Sections. Next, both formats have table sections. These are items common to the en-
tire drawing, such as system variables, layers, and blocks.

Entity Sections. Then comes the part you’re waiting for: entities and their properties. Lines,
circles, polylines, and other geometric objects are called entities.

Object Sections. In the DXF documentation, the word object refers to non-graphical things,
such as layers, layouts, and multiline styles. The object section holds everything that isn’t an
entity or defined by the symbol tables.

Miscellaneous Sections. Near the end of both files are miscellaneous sections, such as the
bitmap used to display preview images.

End of File. Finally, both kinds of files end with the EOF marker, which indicates the end of
the file.

In summary, DXF and DWF files consists of the following sections:

Section Comment

HEADER Version number and system variables.
CLASSES Application-defined classes in the BLOCKS, ENTITIES, and OBJECTS sections.

TABLES Contains these symbol tables:
APPID Application identification.
BLOCK_RECORD Block references.
DIMSTYLE Dimension styles.
LAYER Layer names and settings.
LTYPE Linetype names and definitions.
STYLE Text styles.
UCS Saved user coordinate systems.
VIEW Named views.
VPORT Viewport configurations.

BLOCKS Block definitions.
ENTITIES Graphical objects, including “inserts” (block references).
OBJECTS Nongraphical objects in the drawing.
THUMBNAILIMAGE Preview image (optional).
EOF End of file.

○ ○

chapter 13 understanding dxfunderstanding dxfunderstanding dxfunderstanding dxfunderstanding dxf 255

Miscellaneous Comments

DWG is always binary; DXF can be either ASCII or binary.

Group codes can be in any order. A “0” (zero) indicates the end of a section.

The Select Objects option of the DxfOut (or SaveAs) command creates DXF files with only
the ENTITIES section.

DXF Format

The format of DXF is in pairs of data. The first part of the data explains the meaning of the
second. The first part is called the “group code”; the second is its “associated value.”

As an example, here is the DXF data relating to a circle, which is defined by its center point and
radius:

DXF Data Comment

100 Entity code...
AcDbCircle ...is a circle.

 10 Center point...
6.858256073433437 ... is the x coordinate.

 20 Center point...
4.147281918113382 ...is the y coordinate.

 30 Center point...
0.0 ...is the z coordinate.

 40 Radius...
1.722175158117808 ...is a double-precision real number.

 0 End of section...
ENDSEC ...is the end.

Object is:
100 (AcDbCircle)

40 Radius

Center Point is:
10 (X coordinate)
20 (Y coordinate)
30 (Z coordinate)

○ ○

256 tailoring progeCAD

Header Section of DXF Files

$FILLMODEFILLMODEFILLMODEFILLMODEFILLMODE
 70
 1
 9
$QTEXTMODEQTEXTMODEQTEXTMODEQTEXTMODEQTEXTMODE
 70
 0
 9
$MIRRTEXTMIRRTEXTMIRRTEXTMIRRTEXTMIRRTEXT
 70
 0
 9
$LTSCALE
 40
1.0
 9
$ATTMODE
 70
 1
 9
$TEXTSIZE
 40
0.2
 9
$TRACEWIDTRACEWIDTRACEWIDTRACEWIDTRACEWID
 40
0.05
 9
$TEXTSTYLETEXTSTYLETEXTSTYLETEXTSTYLETEXTSTYLE
 7
Standard
 9
$CLAYERCLAYERCLAYERCLAYERCLAYER
 8
0
 9
$CELTYPECELTYPECELTYPECELTYPECELTYPE
 6
ByLayer
 9
$CECOLORCECOLORCECOLORCECOLORCECOLOR
 62
 256
 9
$CELTSCALECELTSCALECELTSCALECELTSCALECELTSCALE
 40
1.0
 9
$DISPSILHDISPSILHDISPSILHDISPSILHDISPSILH
 70
 0
 9
$DIMSCALEDIMSCALEDIMSCALEDIMSCALEDIMSCALE
 40
1.0
 9
$DIMASZDIMASZDIMASZDIMASZDIMASZ

 40
0.18
 9
$DIMEXODIMEXODIMEXODIMEXODIMEXO
 40
0.0625
 9
$DIMDLIDIMDLIDIMDLIDIMDLIDIMDLI
 40
0.38
 9
$DIMRNDDIMRNDDIMRNDDIMRNDDIMRND
 40
0.0
 9
$DIMDLEDIMDLEDIMDLEDIMDLEDIMDLE
 40
0.0
 9
$DIMEXE
 40
0.18
 9
$DIMTP
 40
0.0
 9
$DIMTM
 40
0.0
 9
$DIMTXTDIMTXTDIMTXTDIMTXTDIMTXT
 40
0.18
 9
$DIMCENDIMCENDIMCENDIMCENDIMCEN
 40
0.09
 9
$DIMTSZDIMTSZDIMTSZDIMTSZDIMTSZ
 40
0.0
 9
$DIMTOLDIMTOLDIMTOLDIMTOLDIMTOL
 70
 0
 9
$DIMLIMDIMLIMDIMLIMDIMLIMDIMLIM
 70
 0
 9
$DIMTIHDIMTIHDIMTIHDIMTIHDIMTIH
 70
 1
 9
$DIMTOHDIMTOHDIMTOHDIMTOHDIMTOH
 70
 1
 9
$DIMSE1DIMSE1DIMSE1DIMSE1DIMSE1
 70

 0
 9
$DIMSE2DIMSE2DIMSE2DIMSE2DIMSE2
 70
 0
 9
$DIMTADDIMTADDIMTADDIMTADDIMTAD
 70
 0
 9
$DIMZINDIMZINDIMZINDIMZINDIMZIN
 70
 0
 9
$DIMBLKDIMBLKDIMBLKDIMBLKDIMBLK
 1

 9
$DIMASODIMASODIMASODIMASODIMASO
 70
 1
 9
$DIMSHODIMSHODIMSHODIMSHODIMSHO
 70
 1
 9
$DIMPOSTDIMPOSTDIMPOSTDIMPOSTDIMPOST
 1

 9
$DIMAPOSTDIMAPOSTDIMAPOSTDIMAPOSTDIMAPOST
 1

 9
$DIMALTDIMALTDIMALTDIMALTDIMALT
 70
 0
 9
$DIMALTDDIMALTDDIMALTDDIMALTDDIMALTD
 70
 2
 9
$DIMALTFDIMALTFDIMALTFDIMALTFDIMALTF
 40
25.4
 9
$DIMLFACDIMLFACDIMLFACDIMLFACDIMLFAC
 40
1.0
 9
$DIMTOFLDIMTOFLDIMTOFLDIMTOFLDIMTOFL
 70
 0
 9
$DIMTVPDIMTVPDIMTVPDIMTVPDIMTVP
 40
0.0
 9
$DIMTIXDIMTIXDIMTIXDIMTIXDIMTIX
 70

9
$ACADVERACADVERACADVERACADVERACADVER
 1
AC1018
 9
$ACADMAINTVERACADMAINTVERACADMAINTVERACADMAINTVERACADMAINTVER
 70
 39
 9
$DWGCODEPAGEDWGCODEPAGEDWGCODEPAGEDWGCODEPAGEDWGCODEPAGE
 3
ANSI_1252
 9
$INSBASEINSBASEINSBASEINSBASEINSBASE
 10
0.0
 20
0.0
 30
0.0
 9
$EXTMINEXTMINEXTMINEXTMINEXTMIN
 10
5.136080915315629
 20
2.425106759995574
 30
0.0
 9
$EXTMAXEXTMAXEXTMAXEXTMAXEXTMAX
 10
8.580431231551244
 20
5.86945707623119
 30
0.0
 9
$LIMMINLIMMINLIMMINLIMMINLIMMIN
 10
0.0
 20
0.0
 9
$LIMMAXLIMMAXLIMMAXLIMMAXLIMMAX
 10
12.0
 20
9.0
 9
$ORTHOMODEORTHOMODEORTHOMODEORTHOMODEORTHOMODE
 70
 0
 9
$REGENMODEREGENMODEREGENMODEREGENMODEREGENMODE
 70
 1
 9

○ ○

chapter 13 understanding dxfunderstanding dxfunderstanding dxfunderstanding dxfunderstanding dxf 257

 0
 9
$DIMSOXDDIMSOXDDIMSOXDDIMSOXDDIMSOXD
 70
 0
 9
$DIMSAHDIMSAHDIMSAHDIMSAHDIMSAH
 70
 0
 9
$DIMBLK1DIMBLK1DIMBLK1DIMBLK1DIMBLK1
 1

 9
$DIMBLK2DIMBLK2DIMBLK2DIMBLK2DIMBLK2
 1

 9
$DIMSTYLEDIMSTYLEDIMSTYLEDIMSTYLEDIMSTYLE
 2
Standard
 9
$DIMCLRDDIMCLRDDIMCLRDDIMCLRDDIMCLRD
 70
 0
 9
$DIMCLREDIMCLREDIMCLREDIMCLREDIMCLRE
 70
 0
 9
$DIMCLRTDIMCLRTDIMCLRTDIMCLRTDIMCLRT
 70
 0
 9
$DIMTFACDIMTFACDIMTFACDIMTFACDIMTFAC
 40
1.0
 9
$DIMGAPDIMGAPDIMGAPDIMGAPDIMGAP
 40
0.09
 9
$DIMJUSTDIMJUSTDIMJUSTDIMJUSTDIMJUST
 70
 0
 9
$DIMSD1DIMSD1DIMSD1DIMSD1DIMSD1
 70
 0
 9
$DIMSD2DIMSD2DIMSD2DIMSD2DIMSD2
 70
 0
 9
$DIMTOLJDIMTOLJDIMTOLJDIMTOLJDIMTOLJ
 70
 1
 9
$DIMTZINDIMTZINDIMTZINDIMTZINDIMTZIN
 70

 0
 9
$DIMALTZDIMALTZDIMALTZDIMALTZDIMALTZ
 70
 0
 9
$DIMALTTZDIMALTTZDIMALTTZDIMALTTZDIMALTTZ
 70
 0
 9
$DIMUPTDIMUPTDIMUPTDIMUPTDIMUPT
 70
 0
 9
$DIMDECDIMDECDIMDECDIMDECDIMDEC
 70
 4
 9
$DIMTDECDIMTDECDIMTDECDIMTDECDIMTDEC
 70
 4
 9
$DIMALTUDIMALTUDIMALTUDIMALTUDIMALTU
 70
 2
 9
$DIMALTTDDIMALTTDDIMALTTDDIMALTTDDIMALTTD
 70
 2
 9
$DIMTXSTYDIMTXSTYDIMTXSTYDIMTXSTYDIMTXSTY
 7
Standard
 9
$DIMAUNITDIMAUNITDIMAUNITDIMAUNITDIMAUNIT
 70
 0
 9
$DIMADECDIMADECDIMADECDIMADECDIMADEC
 70
 0
 9
$DIMALTRNDDIMALTRNDDIMALTRNDDIMALTRNDDIMALTRND
 40
0.0
 9
$DIMAZINDIMAZINDIMAZINDIMAZINDIMAZIN
 70
 0
 9
$DIMDSEPDIMDSEPDIMDSEPDIMDSEPDIMDSEP
 70
 46
 9
$DIMATFITDIMATFITDIMATFITDIMATFITDIMATFIT
 70
 3
 9
$DIMFRACDIMFRACDIMFRACDIMFRACDIMFRAC
 70

 0
 9
$DIMLDRBLKDIMLDRBLKDIMLDRBLKDIMLDRBLKDIMLDRBLK
 1

 9
$DIMLUNITDIMLUNITDIMLUNITDIMLUNITDIMLUNIT
 70
 2
 9
$DIMLWDDIMLWDDIMLWDDIMLWDDIMLWD
 70
 -2
 9
$DIMLWEDIMLWEDIMLWEDIMLWEDIMLWE
 70
 -2
 9
$DIMTMOVEDIMTMOVEDIMTMOVEDIMTMOVEDIMTMOVE
 70
 0
 9
$LUNITSLUNITSLUNITSLUNITSLUNITS
 70
 2
 9
$LUPRECLUPRECLUPRECLUPRECLUPREC
 70
 4
 9
$SKETCHINCSKETCHINCSKETCHINCSKETCHINCSKETCHINC
 40
0.1
 9
$FILLETRADFILLETRADFILLETRADFILLETRADFILLETRAD
 40
0.0
 9
$AUNITSAUNITSAUNITSAUNITSAUNITS
 70
 0
 9
$AUPRECAUPRECAUPRECAUPRECAUPREC
 70
 0
 9
$MENUMENUMENUMENUMENU
 1
.
 9
$ELEVATIONELEVATIONELEVATIONELEVATIONELEVATION
 40
0.0
 9
$PELEVATIONPELEVATIONPELEVATIONPELEVATIONPELEVATION
 40
0.0
 9
$THICKNESSTHICKNESSTHICKNESSTHICKNESSTHICKNESS
 40

0.0
 9
$LIMCHECKLIMCHECKLIMCHECKLIMCHECKLIMCHECK
 70
 0
 9
$CHAMFERACHAMFERACHAMFERACHAMFERACHAMFERA
 40
0.0
 9
$CHAMFERBCHAMFERBCHAMFERBCHAMFERBCHAMFERB
 40
0.0
 9
$CHAMFERCCHAMFERCCHAMFERCCHAMFERCCHAMFERC
 40
0.0
 9
$CHAMFERDCHAMFERDCHAMFERDCHAMFERDCHAMFERD
 40
0.0
 9
$SKPOLY
 70
 0
 9
$TDCREATETDCREATETDCREATETDCREATETDCREATE
 40
2453116.603633889
 9
$TDUCREATETDUCREATETDUCREATETDUCREATETDUCREATE
 40
2453116.895300555
 9
$TDUPDATETDUPDATETDUPDATETDUPDATETDUPDATE
 40
2453116.606109838
 9
$TDUUPDATETDUUPDATETDUUPDATETDUUPDATETDUUPDATE
 40
2453116.897776505
 9
$TDINDWGTDINDWGTDINDWGTDINDWGTDINDWG
 40
0.0020187731
 9
$TDUSRTIMERTDUSRTIMERTDUSRTIMERTDUSRTIMERTDUSRTIMER
 40
0.0020180556
 9
$USRTIMERUSRTIMERUSRTIMERUSRTIMERUSRTIMER
 70
 1
 9
$ANGBASEANGBASEANGBASEANGBASEANGBASE
 50
0.0
 9
$ANGDIRANGDIRANGDIRANGDIRANGDIR
 70

○ ○

258 tailoring progeCAD

 0
 9
$PDMODEPDMODEPDMODEPDMODEPDMODE
 70
 0
 9
$PDSIZEPDSIZEPDSIZEPDSIZEPDSIZE
 40
0.0
 9
$PLINEWIDPLINEWIDPLINEWIDPLINEWIDPLINEWID
 40
0.0
 9
$SPLFRAMESPLFRAMESPLFRAMESPLFRAMESPLFRAME
 70
 0
 9
$SPLINETYPESPLINETYPESPLINETYPESPLINETYPESPLINETYPE
 70
 6
 9
$SPLINESEGSSPLINESEGSSPLINESEGSSPLINESEGSSPLINESEGS
 70
 8
 9
$HANDSEEDHANDSEEDHANDSEEDHANDSEEDHANDSEED
 5
30
 9
$SURFTAB1SURFTAB1SURFTAB1SURFTAB1SURFTAB1
 70
 6
 9
$SURFTAB2SURFTAB2SURFTAB2SURFTAB2SURFTAB2
 70
 6
 9
$SURFTYPESURFTYPESURFTYPESURFTYPESURFTYPE
 70
 6
 9
$SURFUSURFUSURFUSURFUSURFU
 70
 6
 9
$SURFVSURFVSURFVSURFVSURFV
 70
 6
 9
$UCSBASEUCSBASEUCSBASEUCSBASEUCSBASE
 2

 9
$UCSNAMEUCSNAMEUCSNAMEUCSNAMEUCSNAME
 2
$UCSORGUCSORGUCSORGUCSORGUCSORG
 10
0.0
 20

0.0
 30
0.0
 9
$UCSXDIRUCSXDIRUCSXDIRUCSXDIRUCSXDIR
 10
1.0
 20
0.0
 30
0.0
 9
$UCSYDIRUCSYDIRUCSYDIRUCSYDIRUCSYDIR
 10
0.0
 20
1.0
 30
0.0
 9
$UCSORTHOREFUCSORTHOREFUCSORTHOREFUCSORTHOREFUCSORTHOREF
 2

 9
$UCSORTHOVIEWUCSORTHOVIEWUCSORTHOVIEWUCSORTHOVIEWUCSORTHOVIEW
 70
 0
 9
$UCSORGTOPUCSORGTOPUCSORGTOPUCSORGTOPUCSORGTOP
 10
0.0
 20
0.0
 30
0.0
 9
$UCSORGBOTTOMUCSORGBOTTOMUCSORGBOTTOMUCSORGBOTTOMUCSORGBOTTOM
 10
0.0
 20
0.0
 30
0.0
 9
$UCSORGLEFTUCSORGLEFTUCSORGLEFTUCSORGLEFTUCSORGLEFT
 10
0.0
 20
0.0
 30
0.0
 9
$UCSORGRIGHTUCSORGRIGHTUCSORGRIGHTUCSORGRIGHTUCSORGRIGHT
 10
0.0
 20
0.0
 30
0.0
 9

$UCSORGFRONTUCSORGFRONTUCSORGFRONTUCSORGFRONTUCSORGFRONT
 10
0.0
 20
0.0
 30
0.0
 9
$UCSORGBACKUCSORGBACKUCSORGBACKUCSORGBACKUCSORGBACK
 10
0.0
 20
0.0
 30
0.0
 9
$PUCSBASEPUCSBASEPUCSBASEPUCSBASEPUCSBASE
 2

 9
$PUCSNAMEPUCSNAMEPUCSNAMEPUCSNAMEPUCSNAME
 2

 9
$PUCSORGPUCSORGPUCSORGPUCSORGPUCSORG
 10
0.0
 20
0.0
 30
0.0
 9
$PUCSXDIRPUCSXDIRPUCSXDIRPUCSXDIRPUCSXDIR
 10
1.0
 20
0.0
 30
0.0
 9
$PUCSYDIRPUCSYDIRPUCSYDIRPUCSYDIRPUCSYDIR
 10
0.0
 20
1.0
 30
0.0
 9
$PUCSORTHOREFPUCSORTHOREFPUCSORTHOREFPUCSORTHOREFPUCSORTHOREF
 2

 9
$PUCSORTHOVIEWPUCSORTHOVIEWPUCSORTHOVIEWPUCSORTHOVIEWPUCSORTHOVIEW
 70
 0
 9
$PUCSORGTOPPUCSORGTOPPUCSORGTOPPUCSORGTOPPUCSORGTOP
 10
0.0
 20

0.0
 30
0.0
 9
$PUCSORGBOTTOMPUCSORGBOTTOMPUCSORGBOTTOMPUCSORGBOTTOMPUCSORGBOTTOM
 10
0.0
 20
0.0
 30
0.0
 9
$PUCSORGLEFTPUCSORGLEFTPUCSORGLEFTPUCSORGLEFTPUCSORGLEFT
 10
0.0
 20
0.0
 30
0.0
 9
$PUCSORGRIGHTPUCSORGRIGHTPUCSORGRIGHTPUCSORGRIGHTPUCSORGRIGHT
 10
0.0
 20
0.0
 30
0.0
 9
$PUCSORGFRONTPUCSORGFRONTPUCSORGFRONTPUCSORGFRONTPUCSORGFRONT
 10
0.0
 20
0.0
 30
0.0
 9
$PUCSORGBACKPUCSORGBACKPUCSORGBACKPUCSORGBACKPUCSORGBACK
 10
0.0
 20
0.0
 30
0.0
 9
$USERI1USERI1USERI1USERI1USERI1
 70
 0
 9
$USERI2USERI2USERI2USERI2USERI2
 70
 0
 9
$USERI3USERI3USERI3USERI3USERI3
 70
 0
 9
$USERI4USERI4USERI4USERI4USERI4
 70
 0
 9

○ ○

chapter 13 understanding dxfunderstanding dxfunderstanding dxfunderstanding dxfunderstanding dxf 259

$USERI5USERI5USERI5USERI5USERI5
 70
 0
 9
$USERR1USERR1USERR1USERR1USERR1
 40
0.0
 9
$
 40
0.0
 9
$USERR3USERR3USERR3USERR3USERR3
 40
0.0
 9
$USERR4USERR4USERR4USERR4USERR4
 40
0.0
 9
$USERR5USERR5USERR5USERR5USERR5
 40
0.0
 9
$WORLDVIEWWORLDVIEWWORLDVIEWWORLDVIEWWORLDVIEW
 70
 1
 9
$SHADEDGESHADEDGESHADEDGESHADEDGESHADEDGE
 70
 3
 9
$SHADEDIFSHADEDIFSHADEDIFSHADEDIFSHADEDIF
 70
 70
 9
$TILEMODETILEMODETILEMODETILEMODETILEMODE
 70
 1
 9
$MAXACTVPMAXACTVPMAXACTVPMAXACTVPMAXACTVP
 70
 64
 9
$PINSBASEPINSBASEPINSBASEPINSBASEPINSBASE
 10
0.0
 20
0.0
 30
0.0
 9
$PLIMCHECKPLIMCHECKPLIMCHECKPLIMCHECKPLIMCHECK
 70
 0
 9
$PEXTMINPEXTMINPEXTMINPEXTMINPEXTMIN
 10
1.000000000000000E+20
 20

1.000000000000000E+20
 30
1.000000000000000E+20
 9
$PEXTMAXPEXTMAXPEXTMAXPEXTMAXPEXTMAX
 10
-1.000000000000000E+20
 20
-1.000000000000000E+20
 30
-1.000000000000000E+20
 9
$PLIMMINPLIMMINPLIMMINPLIMMINPLIMMIN
 10
0.0
 20
0.0
 9
$PLIMMAXPLIMMAXPLIMMAXPLIMMAXPLIMMAX
 10
12.0
 20
9.0
 9
$UNITMODEUNITMODEUNITMODEUNITMODEUNITMODE
 70
 0
 9
$VISRETAINVISRETAINVISRETAINVISRETAINVISRETAIN
 70
 1
 9
$PLINEGENPLINEGENPLINEGENPLINEGENPLINEGEN
 70
 0
 9
$PSLTSCALEPSLTSCALEPSLTSCALEPSLTSCALEPSLTSCALE
 70
 1
 9
$TREEDEPTHTREEDEPTHTREEDEPTHTREEDEPTHTREEDEPTH
 70
 3020
 9
$CMLSTYLECMLSTYLECMLSTYLECMLSTYLECMLSTYLE
 2
Standard
 9
$CMLJUSTCMLJUSTCMLJUSTCMLJUSTCMLJUST
 70
 0
 9
$CMLSCALECMLSCALECMLSCALECMLSCALECMLSCALE
 40
1.0
 9
$PROXYGRAPHICSPROXYGRAPHICSPROXYGRAPHICSPROXYGRAPHICSPROXYGRAPHICS
 70
 1
 9

$MEASUREMENTMEASUREMENTMEASUREMENTMEASUREMENTMEASUREMENT
 70
 0
 9
$CELWEIGHTCELWEIGHTCELWEIGHTCELWEIGHTCELWEIGHT
370
 -1
 9
$ENDCAPSENDCAPSENDCAPSENDCAPSENDCAPS
280
 0
 9
$JOINSTYLEJOINSTYLEJOINSTYLEJOINSTYLEJOINSTYLE
280
 0
 9
$LWDISPLAYLWDISPLAYLWDISPLAYLWDISPLAYLWDISPLAY
290
 0
 9
$INSUNITSINSUNITSINSUNITSINSUNITSINSUNITS
 70
 1
 9
$HYPERLINKBASEHYPERLINKBASEHYPERLINKBASEHYPERLINKBASEHYPERLINKBASE
 1

 9
$STYLESHEETSTYLESHEETSTYLESHEETSTYLESHEETSTYLESHEET
 1

 9
$XEDITXEDITXEDITXEDITXEDIT
290
 1
 9
$CEPSNTYPECEPSNTYPECEPSNTYPECEPSNTYPECEPSNTYPE
380
 0
 9
$PSTYLEMODEPSTYLEMODEPSTYLEMODEPSTYLEMODEPSTYLEMODE
290
 1
 9
$FINGERPRINTGUIDFINGERPRINTGUIDFINGERPRINTGUIDFINGERPRINTGUIDFINGERPRINTGUID
 2
{35221D38-97D8-4074-9FA9-
AC5AB89E4A0E}
 9
$VERSIONGUIDVERSIONGUIDVERSIONGUIDVERSIONGUIDVERSIONGUID
 2
{855B33C7-1572-44F4-A59A-
EF5E25C06767}
 9
$EXTNAMESEXTNAMESEXTNAMESEXTNAMESEXTNAMES
290
 1
 9
$PSVPSCALEPSVPSCALEPSVPSCALEPSVPSCALEPSVPSCALE
 40

0.0
 9
$OLESTARTUPOLESTARTUPOLESTARTUPOLESTARTUPOLESTARTUP
290
 0
 9
$SORTENTSSORTENTSSORTENTSSORTENTSSORTENTS
280
 127
 9
$INDEXCTLINDEXCTLINDEXCTLINDEXCTLINDEXCTL
280
 0
 9
$HIDETEXTHIDETEXTHIDETEXTHIDETEXTHIDETEXT
280
 1
 9
$XCLIPFRAMEXCLIPFRAMEXCLIPFRAMEXCLIPFRAMEXCLIPFRAME
290
 0
 9
$HALOGAPHALOGAPHALOGAPHALOGAPHALOGAP
280
 0
 9
$OBSCOLOROBSCOLOROBSCOLOROBSCOLOROBSCOLOR
 70
 257
 9
$OBSLTYPEOBSLTYPEOBSLTYPEOBSLTYPEOBSLTYPE
280
 0
 9
$INTERSECTIONDISPLAYINTERSECTIONDISPLAYINTERSECTIONDISPLAYINTERSECTIONDISPLAYINTERSECTIONDISPLAY
280
 0
 9
$INTERSECTIONCOLORINTERSECTIONCOLORINTERSECTIONCOLORINTERSECTIONCOLORINTERSECTIONCOLOR
 70
 257
 9
$DIMASSOCDIMASSOCDIMASSOCDIMASSOCDIMASSOC
280
 2
 9
$PROJECTNAMEPROJECTNAMEPROJECTNAMEPROJECTNAMEPROJECTNAME
 1

 0
ENDSEC

○ ○

260 tailoring progeCAD

Notice the pairings: group code 100 alerts you that the associated value is the name of an
entity. The entity is a circle, in this case.

The group code 10 alerts you to the x coordinate of the circle’s center (6.858256073433437).
Similarly, group code 20 is followed by the y coordinate, and group code 30 reports the z
coordinate.

Group code 40 is followed by the radius (1.722175158117808). The definition of the circle
ends with group code 0 reporting the end of the section.

Object Properties

The group codes I unpacked for you above relate to the circle’s geometry. But circles also
have properties, such as color, layer, and linetype. A similar group code system describes
properties. For example, group code 6 describes the linetype, group code 8 the layer name,
and 62 the color.

Properties Comment

 6 Linetype...
ByLayer ...is ByLayer.

 8 Layer name...
 0 ...is 0.

 62 Color...
 1 ...is 1 (red).

Properties can apply to the entire drawing or to a layer (global), or to individual entities
(local). Thus, you find the linetype, layer, color, and other properties more than once in DXF
files.

For example, a circle is on layer. When the circle’s color is BYLAYER, it is the same color as
assigned to the layer; but the color of the circle can be overridden locally.

Group code 9 is only used in the header section of the DXF file; its purpose is to announce
the start of the next section.

Group Codes

Understanding group codes is crucial to understanding DXF. But they can be tricky to un-
derstand, because their meaning changes subtly with the entity type.

For circles, lines, and other entities, 10 always refers to the x coordinate. But the x coordinate’s
reference differs: for some, it is at the center point, for others it is at the end point. For
example, you saw that group code 10 reports the x coordinate of a circle’s center point. For
lines, however, group code 10 reports the x coordinate of the first endpoint. The same mean-
ing, but slightly different interpretation.

Autodesk groups the group codes into categories, which helps deciphering DXF files. For
example, all group codes in the range from 10 to 39 are double-precision 3D points (x, y, or
z). Group codes in the range from 0 to 9 are strings. And so on. There are even some negative
group codes, which are used by application data.

○ ○

chapter 13 understanding dxfunderstanding dxfunderstanding dxfunderstanding dxfunderstanding dxf 261

TIPS When writing software to read DXF file, the software needs to read two lines of data at
a time. First, the program reads one line to get the group code. Knowing the group code, the
program reads the second line to find the value of the group code.

The longest line in a DXF file can be 256 characters; additional characters are truncated.

HEADER Section

DXF files start with the Header section. The start of the Header section is:
0
SECTION
 2
HEADER

And the end is signaled by:
 0
ENDSEC

A typical entry looks like this:
 9
$ACADVER
 1
AC1018

The meaning of the code is as follows.

Header Comments

 9 Name of the system variable is...
$ACADVER ... AcadVer (DXF version number).

 1 Value of the system variable is...
AC1018 ... AC1018

Group code 9 is found only in the header section of the DXF file; its purpose is to announce the
impending name of a system variable, or other header data.

All data in the Header section follows this pattern:

 9
$variableName
groupCodeNumber
value

The group code that follows reports the value of the system variable. In the $AcadVer example
on the previous page, it is 1, because it is a piece of text. If the value were an integer, then group
code would be 70; if a real number, the group code is 40; if x,y,z coordinates, then 10(x),
20(y), and 30 (z). And the occasional sysvar uses a special group code, such as 290 for
PlotStyleMode.

The Header contains the settings for system variables. But not all sysvars, because the value of
some are not stored (their values are dynamic, such as the current time and the name of the
current drawing). Others sysvars are stored in the Windows registry, because they are the same
for all drawings, such as the user login name.

○ ○

262 tailoring progeCAD

Version Numbers

Autodesk uses these number to distinguish between drawing database revisions:

DXF Version AutoCAD Release

AC1000 V1.0
AC1001 V1.2
AC1002 V1.4
AC1003 V2.5
AC1004 V2.6
AC1005 R9
AC1006 R10
AC1009 R11 and R12
AC1012 R13
AC1014 R14
AC1015 2000
AC1016 2002
AC2017 2004
AC1018 2005
AC1019 2006
AC1020 2007
AC1021 2008
AC1022 2009
AC1023 2010

CLASSES Section

The Classes section contains application-defined classes that are used later by the BLOCKS,
ENTITIES, and OBJECTS sections.

The start of the Classes section is:
0
SECTION
 2
CLASSES

And the end is signaled by:
 0
ENDSEC

In between are some of the following classes. (Applications can add their own classes to this list.)

Classes

ACDBDICTIONARYWDFLT
ACDBPLACEHOLDER
ARCALIGNEDTEXT
DICTIONARYVAR
HATCH
IDBUFFER
IMAGE
IMAGEDEF
IMAGEDEF_REACTOR
LAYER_INDEX

○ ○

chapter 13 understanding dxfunderstanding dxfunderstanding dxfunderstanding dxfunderstanding dxf 263

LAYOUT
LWPOLYLINE
OBJECT_PTR
OLE2FRAME
PLOTSETTINGS
RASTERVARIABLES
RTEXT
SORTENTSTABLE
SPATIAL_INDEX
SPATIAL_FILTER
WIPEOUT
WIPEOUTVARIABLES

All data in the Classes section follows this pattern:

 0
CLASS Record type (CLASS). Identifies beginning of a CLASS record
 1
classDxfRecord Class DXF record name; always unique
 2
className Class DXF record name; always unique
 3
appName Application name.
90
flag Bit-code to indicate the capabilities of this object when displayed as a proxy:

0 = No operations allowed
1 = Erase allowed
2 = Transform allowed
4 = Color change allowed
8 = Layer change allowed
16 = Linetype change allowed
32 = Linetype scale change allowed
64 = Visibility change allowed
127 = All operations except cloning allowed
128 = Cloning allowed
255 = All operations allowed
32768 = R13 format proxy

280
flag 1 = Class not loaded when this DXF file created

0 = Otherwise
281
flag 1 = Class derived from AcDbEntity class; can be in BLOCKS or ENTITIES section.

0 = May appear in the OBJECTS section only.

TABLES Section

Drawings consist of objects and tables. Tables describe the global aspects of drawings, such as
its layers, text styles, and blocks. The start of the Table section is:

0
SECTION
 2
TABLES

And the end is signaled by:
 0
ENDSEC

○ ○

264 tailoring progeCAD

The Tables section contains these symbol tables:

Tables Comment

APPID Application identification.
BLOCK_RECORD Block references.
DIMSTYLE Dimension styles.
LAYER Layer names and settings.
LTYPE Linetype names and definitions.
STYLE Text styles.
UCS Saved user coordinate systems.
VIEW Named views.
VPORT Viewport configurations.

All data in the Tables section follow this pattern:
0
TABLE
 2
tableType
 5
handle
100
AcDbSymbolTable
70
maximumEntries

Common table group codes, repeat for each entry
 0
tableType
 5
handle
100
AcDbSymbolTableRecord
data

BLOCKS Section

The Blocks section holds block definitions. A block definition consists of these parts:

• The entities that make up the block.

• Basepoint (the point at which the block is inserted).

• Name of the block.

(The Entities section, later in the DXF file, defines where and how the blocks are inserted in
the drawing.)

The start of the Blocks section is:
0
SECTION
 2
BLOCKS

○ ○

chapter 13 understanding dxfunderstanding dxfunderstanding dxfunderstanding dxfunderstanding dxf 265

And the end is signaled by:
 0
ENDSEC

The block definition generically looks like this:

 0
BLOCK
 5
handleNumber
100
AcDbEntity
 8
layerName
100
AcDbBlockBegin
 2
blockName
70
flag
10
xCoordinate
20
yCoordinate
30
zCoordinate
 3
blockName
 1
xrefPath

Blocks consist of one or more entities. To define the start of an entity:

 0
entityType
dataAboutTheEntity

See the Entities section for details on defining entities. The block definition ends with:

0
ENDBLK
 5
handle
100
AcDbBlockEnd

ENTITIES Section

The Entities section holds graphical objects, including “inserts” (block references).

The start of the Entities section is:
0
SECTION
 2
ENTITIES

○ ○

266 tailoring progeCAD

And the end is signaled by:
 0
ENDSEC

The generic entry looks like this:
0
entityType
 5
handle
330
pointerToOwner
100
AcDbEntity
 8
layerName
100
AcDbclassName
dataSpecificToEntity

Entities are:

Entity Comment

3DFACE 3D faces (surfaces)
3DSOLID 3D solids created by ShapeManager
ACAD_PROXY_ENTITY Proxy or zombie objects created by other applications
ARC Arcs
ATTDEF Attribute definitions
ATTRIB Attributes values
BODY 3D solids created by ShapeManager
CIRCLE Circles
DIMENSION Associative dimensions
ELLIPSE True ellipses
HATCH Associative hatch patterns
IMAGE Raster images
INSERT Inserted blocks
LEADER Leaders
LINE Lines
LWPOLYLINE Lightweight polylines
MLINE Multilines
MTEXT Multiline text
OLEFRAME Object linking and embedding objects
OLE2FRAME OLE version 2 objects
POINT Points
POLYLINE Polylines
RAY Rays (semi-infinite lines)
REGION 2D regions
SEQEND End of a polyline sequence
SHAPE Shapes defined by .shx files
SOLID 2D solid-filled areas
SPLINE Splines
TABLE Tables
TEXT Single-line text
TOLERANCE Tolerances

○ ○

chapter 13 understanding dxfunderstanding dxfunderstanding dxfunderstanding dxfunderstanding dxf 267

VERTEX Polyline vertices
VIEWPOINT Viewpoints
WIPEOUT Wipeout areas
XLINE Xlines (infinite lines)

OBJECTS Section

The Objects section describes nongraphical objects in the drawing.

The start of the Objects section is:
0
SECTION
 2
OBJECTS

And the end is signaled by:
 0
ENDSEC

A typical entry looks like this:

Object Comments

ACAD_PROXY_OBJECT
ACDBDICTIONARYWDFLT
ACDBPLACEHOLDER
DICTIONARY
DICTIONARYVAR
DIMASSOC
GROUP
IDBUFFER
IMAGEDEF
IMAGEDEF_REACTOR
LAYER_INDEX
LAYER_FILTER
LAYOUT Data related to layouts.
MLINESTYLE Data describing multiline styles.
OBJECT_PTR Data related to ASE (AutoCAD SQL Extension).
PLOTSETTINGS Settings used for plotting.
RASTERVARIABLES Data related to raster images.
SPATIAL_INDEX Contains no data; can be ignored.
SPATIAL_FILTER Data related to clipped external references.
SORTENTSTABLE Specifies the order in which to draw entities; used by DrawOrder.
TABLESTYLE Data describing table styles.
VBA_PROJECT Data related to Visual Basic for Applications.
WIPEOUTVARIABLES Data related to wipeout entities.
XRECORD Xrecords contain arbitrary data.

○ ○

268 tailoring progeCAD

THUMBNAILIMAGE Section

The Thumbnail section contains a preview image (in BMP format) of the last-saved drawing
view. This section is optional, and exists only if the preview has been saved.

The start of the Thumbnailimage section is:
0
SECTION
 2
THUMBNAILIMAGE

And the end is signaled by:
 0
ENDSEC

A typical entry looks like this:

Thumbnail Comments

90 Total number of bytes in the image.
310 Preview image data, 256 characters per line.

EOF

The EOF signals the end of the DXF file. (EOF = End of file.)
9

○ ○

chapter 13 understanding dxfunderstanding dxfunderstanding dxfunderstanding dxfunderstanding dxf 269

Reproduced from Autodesk’s DXF documentation:

Code Comment

–5 APP: persistent reactor chain.
–4 APP: conditional operator (used only with ssget).
–3 APP: extended data (XDATA) sentinel (fixed).
–2 APP: entity name reference (fixed).
–1 APP: entity name. The name changes each time a drawing is opened; it’s never saved.

0
0 Text string indicating the entity type (fixed).
1 Primary text value for an entity.
2 Name (attribute tag, block name, etc) 1.

3–4 Other text or name values.
5 Entity handle; text string of up to 16 hexadecimal digits (fixed).
6 Linetype name (fixed).
7 Text style name (fixed).
8 Layer name (fixed).
9 DXF: variable name identifier (used only in HEADER section of the DXF file).
10 Primary point; this is the start point of a line or text entity, center of a circle, and so on .

DXF: X value of the primary point (followed by Y and Z value codes 20 and 30).
APP: 3D point (list of three reals).

11–18 Other points.
DXF: X value of other points (followed by Y value codes 21–28 and Z value codes 31–38)
APP: 3D point (list of three reals).

20, 30 DXF: Y and Z values of the primary point.
21–28,31–37DXF: Y and Z values of other points.
38 DXF: entity’s elevation if nonzero.
39 Entity’s thickness if nonzero (fixed).
40–48 Double-precision floating-point values (text height, scale factors, and so on).
48 Linetype scale; double precision floating point scalar value; default value is defined for all

entity types.
49 Repeated double-precision floating-point value. Multiple 49 groups may appear in one entity

for variable-length tables (such as the dash lengths in the LTYPE table). A 7x group always
appears before the first 49 group to specify the table length.

50–58 Angles (output in degrees to DXF files and radians through AutoLISP and ObjectARX
applications)

60 Entity visibility; integer value; absence or 0 indicates visibility; 1 indicates invisibility.
62 Color number (fixed).
66 “Entities follow” flag (fixed).
67 Space—that is, model or paper space (fixed).
68 APP: identifies whether viewport is on but fully off screen; is not active or is off.
69 APP: viewport identification number.
70–78 Integer values, such as repeat counts, flag bits, or modes.
90–99 32-bit integer values.

○ ○

270 tailoring progeCAD

100
100 Subclass data marker (with derived class name as a string). Required for all objects and

entity classes that are derived from another concrete class. The subclass data marker
segregates data defined by different classes in the inheritance chain for the same object.
This is in addition to the requirement for DXF names for each distinct concrete class derived
from ObjectARX 2

102 Control string, followed by “{<arbitrary name>” or “}”. Similar to the xdata 1002 group
code, except that when the string begins with “{“, it can be followed by an arbitrary string
whose interpretation is up to the application. The only other control string allowed is “}” as
a group terminator. AutoCAD does not interpret these strings except during drawing audit
operations. They are for application use 2

105 Object handle for DIMVAR symbol table entry.
110 UCS origin (appears only if code 72 is set to 1).

DXF: X value; APP: 3D point.
111 UCS X-axis (appears only if code 72 is set to 1).

DXF: X value; APP: 3D vector.
112 UCS Y-axis (appears only if code 72 is set to 1).

DXF: X value; APP: 3D vector.
120–122 DXF: Y value of UCS origin, UCS X-axis, and UCS Y-axis.
130–132 DXF: Z value of UCS origin, UCS X-axis, and UCS Y-axis.
140–149 Double-precision floating-point values (e.g: points, elevation, and DIMSTYLE settings).
170–179 16-bit integer values, such as flag bits representing DIMSTYLE settings.

200
210 Extrusion direction (fixed).

DXF: X value of extrusion direction.
APP: 3D extrusion direction vector.

220, 230 DXF: Y and Z values of the extrusion direction.
270–279 16-bit integer values.
280–289 16-bit integer values.
290–299 Boolean flag value.

300
300–309 Arbitrary text strings.
310–319 Arbitrary binary chunks with same representation and limits as 1004 group codes:

hexadecimal strings of up to 254 characters represent data chunks of up to 127 bytes.
320–329 Arbitrary object handles; handle values that are taken “as is.”

They are not translated during INSERT and XREF operations.

330–339 Soft-pointer handle; arbitrary soft pointers to other objects within same DXF file or
drawing. Translated during INSERT and XREF operations.

340–349 Hard-pointer handle; arbitrary hard pointers to other objects within same DXF file
or drawing. Translated during INSERT and XREF operations.

350–359 Soft-owner handle; arbitrary soft ownership links to other objects within same DXF
file or drawing. Translated during INSERT and XREF operations.

360–369 Hard-owner handle; arbitrary hard ownership links to other objects within same
DXF file or drawing. Translated during INSERT and XREF operations.

370–379 Lineweight enum value (AcDb::LineWeight). Stored and moved around as a 16-bit integer.
Custom non-entity objects may use the full range, but entity classes only use 371–379 DXF
group codes in their representation, because AutoCAD and AutoLISP both always assume a
370 group code is the entity’s lineweight. This allows 370 to behave like other “common”
entity fields.

380–389 PlotStyleName type enum (AcDb::PlotStyleNameType).
Stored and moved around as a 16-bit integer. Custom non-entity objects may use the full
range, but entity classes only use 381–389 DXF group codes in their representation, for the
same reason as the Lineweight range above.

○ ○

chapter 13 understanding dxfunderstanding dxfunderstanding dxfunderstanding dxfunderstanding dxf 271

390–399 String representing handle value of the PlotStyleName object, basically a hard pointer,
but has a different range to make backward compatibility easier to deal with. Stored and
moved around as an object ID (a handle in DXF files) and a special type in AutoLISP.
Custom non-entity objects may use the full range, but entity classes only use 391–399 DXF
group codes in their representation, for the same reason as the lineweight range above.

400
400–409 16-bit integers.
410–419 String.
420-427 32-bit integer value. When used with True Color; a 32-bit integer representing a 24-bit

color value. The high-order byte (8 bits) is 0, the low-order byte an unsigned char holding
the Blue value (0-255), then the Green value, and the next-to-high order byte is the Red
Value. Converting this integer value to hexadecimal yields the following bit mask:
0x00RRGGBB. For example, a true color with Red==200, Green==100 and Blue==50 is
0x00C86432, and in DXF, in decimal, 13132850.

430-437 String; when used for True Color, a string representing the name of the color.
440-447 32-bit integer value. When used for True Color, the transparency value.
450-459 Long.
460-469 Double-precision floating-point value.
470-479 String.

999+
999 DXF: The 999 group code indicates that the line following it is a comment string.

SAVEAS does not include such groups in a DXF output file, but OPEN honors them and
ignores the comments. You can use the 999 group to include comments in a DXF file that
you’ve edited .

1000 ASCII string (up to 255 bytes long) in extended data.
1001 Registered application name (ASCII string up to 31 bytes long) for extended data.
1002 Extended data control string (“{” or “}”).
1003 Extended data layer name.
1004 Chunk of bytes (up to 127 bytes long) in extended data.
1005 Entity handle in extended data; text string of up to 16 hexadecimal digits.
1010 A point in extended data.

DXF: X value (followed by 1020 and 1030 groups).
APP: 3D point.

1020, 1030 DXF: Y and Z values of a point.
1011 A 3D world space position in extended data.

DXF: X value (followed by 1021 and 1031 groups).

APP: 3D point.
1021, 1031 DXF: Y and Z values of a world space position.
1012 A 3D world space displacement in extended data.

DXF: X value (followed by 1022 and 1032 groups).
APP: 3D vector.

1022, 1032 DXF: Y and Z values of a world space displacement.
1013 A 3D world space direction in extended data.

DXF: X value (followed by 1022 and 1032 groups).
APP: 3D vector.

1023, 1033 DXF: Y and Z values of a world space direction.
1040 Extended data double-precision floating-point value.
1041 Extended data distance value.
1042 Extended data scale factor.
1070 Extended data 16-bit signed integer.
1071 Extended data 32-bit signed long.

○ ○

272 tailoring progeCAD

Notes
1 With the introduction of extended symbol names in AutoCAD 2000, the 255-character limit was lifted. There is no explicit
limit to the number of bytes per line, although most lines should fall within 2049 bytes.
2255-character maximum; less for Unicode strings.

